BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25409500)

  • 1. Bloom-forming cyanobacteria support copepod reproduction and development in the Baltic Sea.
    Hogfors H; Motwani NH; Hajdu S; El-Shehawy R; Holmborn T; Vehmaa A; Engström-Öst J; Brutemark A; Gorokhova E
    PLoS One; 2014; 9(11):e112692. PubMed ID: 25409500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antioxidant Responses in Copepods Are Driven Primarily by Food Intake, Not by Toxin-Producing Cyanobacteria in the Diet.
    Gorokhova E; El-Shehawy R
    Front Physiol; 2021; 12():805646. PubMed ID: 35058807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How Copepods Can Eat Toxins Without Getting Sick: Gut Bacteria Help Zooplankton to Feed in Cyanobacteria Blooms.
    Gorokhova E; El-Shehawy R; Lehtiniemi M; Garbaras A
    Front Microbiol; 2020; 11():589816. PubMed ID: 33510717
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Uptake and accumulation of dissolved, radiolabeled nodularin in Baltic Sea zooplankton.
    Karjalainen M; Reinikainen M; Lindvall F; Spoof L; Meriluoto JA
    Environ Toxicol; 2003 Feb; 18(1):52-60. PubMed ID: 12539144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Projected marine climate change: effects on copepod oxidative status and reproduction.
    Vehmaa A; Hogfors H; Gorokhova E; Brutemark A; Holmborn T; Engström-Öst J
    Ecol Evol; 2013 Nov; 3(13):4548-57. PubMed ID: 24340194
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Niche separation of Baltic Sea cyanobacteria during bloom events by species interactions and autecological preferences.
    Eigemann F; Schwartke M; Schulz-Vogt H
    Harmful Algae; 2018 Feb; 72():65-73. PubMed ID: 29413385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sedimentation of Nodularia spumigena and distribution of nodularin in the food web during transport of a cyanobacterial bloom from the Baltic Sea to the Kattegat.
    Carlsson P; Rita D
    Harmful Algae; 2019 Jun; 86():74-83. PubMed ID: 31358279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecosystem consequences of cyanobacteria in the northern Baltic Sea.
    Karjalainen M; Engström-Ost J; Korpinen S; Peltonen H; Pääkkönen JP; Rönkkönen S; Suikkanen S; Viitasalo M
    Ambio; 2007 Apr; 36(2-3):195-202. PubMed ID: 17520934
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copepod Prey Selection and Grazing Efficiency Mediated by Chemical and Morphological Defensive Traits of Cyanobacteria.
    Rangel LM; Silva LHS; Faassen EJ; Lürling M; Ger KA
    Toxins (Basel); 2020 Jul; 12(7):. PubMed ID: 32708114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa.
    Sew G; Calbet A; Drillet G; Todd PA
    Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fitness consequences for copepods feeding on a red tide dinoflagellate: deciphering the effects of nutritional value, toxicity, and feeding behavior.
    Prince EK; Lettieri L; McCurdy KJ; Kubanek J
    Oecologia; 2006 Mar; 147(3):479-88. PubMed ID: 16261377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoplankton food quality determines time windows for successful zooplankton reproductive pulses.
    Vargas CA; Escribano R; Poulet S
    Ecology; 2006 Dec; 87(12):2992-9. PubMed ID: 17249223
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea.
    Lin JN; Yan T; Zhang QC; Wang YF; Liu Q; Zhou MJ
    Mar Pollut Bull; 2014 Nov; 88(1-2):302-10. PubMed ID: 25242234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basin-specific changes in filamentous cyanobacteria community composition across four decades in the Baltic Sea.
    Olofsson M; Suikkanen S; Kobos J; Wasmund N; Karlson B
    Harmful Algae; 2020 Jan; 91():101685. PubMed ID: 32057344
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Overview of key phytoplankton toxins and their recent occurrence in the North and Baltic Seas.
    Luckas B; Dahlmann J; Erler K; Gerdts G; Wasmund N; Hummert C; Hansen PD
    Environ Toxicol; 2005 Feb; 20(1):1-17. PubMed ID: 15712332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interspecific resource competition-combined effects of radiation and nutrient limitation on two diazotrophic filamentous cyanobacteria.
    Mohlin M; Roleda MY; Pattanaik B; Tenne SJ; Wulff A
    Microb Ecol; 2012 May; 63(4):736-50. PubMed ID: 22057471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Effects on Coexisting Microalgae of the Allelochemicals Produced by the Bloom-Forming Cyanobacteria
    Śliwińska-Wilczewska S; Felpeto AB; Możdżeń K; Vasconcelos V; Latała A
    Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31817796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin.
    Sivonen K; Kononen K; Carmichael WW; Dahlem AM; Rinehart KL; Kiviranta J; Niemela SI
    Appl Environ Microbiol; 1989 Aug; 55(8):1990-5. PubMed ID: 2506812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition.
    Rice E; Stewart G
    Mar Environ Res; 2016 Sep; 120():154-65. PubMed ID: 27552121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The history of cyanobacterial blooms in the Baltic Sea.
    Finni T; Kononen K; Olsonen R; Wallström K
    Ambio; 2001 Aug; 30(4-5):172-8. PubMed ID: 11697246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.