BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 25409500)

  • 21. The interaction between cyanobacteria and zooplankton in a more eutrophic world.
    Ger KA; Urrutia-Cordero P; Frost PC; Hansson LA; Sarnelle O; Wilson AE; Lürling M
    Harmful Algae; 2016 Apr; 54():128-144. PubMed ID: 28073472
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reproductive trade-offs of the estuarine copepod Eurytemora affinis under different thermal and haline regimes.
    Souissi A; Hwang JS; Souissi S
    Sci Rep; 2021 Oct; 11(1):20139. PubMed ID: 34635769
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mesozooplankton grazing on picocyanobacteria in the Baltic Sea as inferred from molecular diet analysis.
    Motwani NH; Gorokhova E
    PLoS One; 2013; 8(11):e79230. PubMed ID: 24260175
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copepods induce paralytic shellfish toxin production in marine dinoflagellates.
    Selander E; Thor P; Toth G; Pavia H
    Proc Biol Sci; 2006 Jul; 273(1594):1673-80. PubMed ID: 16769640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Differences in lethal response between male and female calanoid copepods and life cycle traits to cadmium toxicity.
    Kadiene EU; Bialais C; Ouddane B; Hwang JS; Souissi S
    Ecotoxicology; 2017 Nov; 26(9):1227-1239. PubMed ID: 28990129
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Microcystis aeruginosa and Nodularia spumigena on survival of Eurytemora affinis and the embryonic and larval development of the Baltic herring Clupea harengus membras.
    Ojaveer E; Simm M; Balode M; Purina I; Suursaar U
    Environ Toxicol; 2003 Aug; 18(4):236-42. PubMed ID: 12900942
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Copepod growth and diatoms: insensitivity of Acartia tonsa to the composition of semi-natural plankton mixtures manipulated by silicon:nitrogen ratios in mesocosms.
    Sommer U
    Oecologia; 2009 Feb; 159(1):207-15. PubMed ID: 18985392
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Algal Diet of Small-Bodied Crustacean Zooplankton in a Cyanobacteria-Dominated Eutrophic Lake.
    Tõnno I; Agasild H; Kõiv T; Freiberg R; Nõges P; Nõges T
    PLoS One; 2016; 11(4):e0154526. PubMed ID: 27124652
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cyanobacterial Akinete Distribution, Viability, and Cyanotoxin Records in Sediment Archives From the Northern Baltic Sea.
    Wood SM; Kremp A; Savela H; Akter S; Vartti VP; Saarni S; Suikkanen S
    Front Microbiol; 2021; 12():681881. PubMed ID: 34211448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interspecific Interactions Drive Nonribosomal Peptide Production in Nodularia spumigena.
    Lage S; Mazur-Marzec H; Gorokhova E
    Appl Environ Microbiol; 2022 Aug; 88(15):e0096622. PubMed ID: 35862669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rehabilitating the cyanobacteria - niche partitioning, resource use efficiency and phytoplankton community structure during diazotrophic cyanobacterial blooms.
    Olli K; Klais R; Tamminen T
    J Ecol; 2015 Sep; 103(5):1153-1164. PubMed ID: 26900174
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Egg production, egg hatching success, and population growth of the calanoid copepod Acartia grani (Calanoida, acartiidae) fed with eight different diets.
    Sumares B; Nogueira N
    Commun Agric Appl Biol Sci; 2013; 78(4):441-4. PubMed ID: 25141736
    [No Abstract]   [Full Text] [Related]  

  • 34. Direct and indirect effects of elevated CO2 are revealed through shifts in phytoplankton, copepod development, and fatty acid accumulation.
    McLaskey AK; Keister JE; Schoo KL; Olson MB; Love BA
    PLoS One; 2019; 14(3):e0213931. PubMed ID: 30870509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The reproductive effort of Lepeophtheirus pectoralis (Copepoda: Caligidae): insights into the egg production strategy of parasitic copepods.
    Frade DG; Santos MJ; Cavaleiro FI
    Parasitology; 2016 Jan; 143(1):87-96. PubMed ID: 26549240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Changes in Growth, Photosynthesis Performance, Pigments, and Toxin Contents of Bloom-Forming Cyanobacteria after Exposure to Macroalgal Allelochemicals.
    Budzałek G; Śliwińska-Wilczewska S; Klin M; Wiśniewska K; Latała A; Wiktor JM
    Toxins (Basel); 2021 Aug; 13(8):. PubMed ID: 34437460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nitrogen-fixing bacteria associated with copepods in coastal waters of the North Atlantic Ocean.
    Scavotto RE; Dziallas C; Bentzon-Tilia M; Riemann L; Moisander PH
    Environ Microbiol; 2015 Oct; 17(10):3754-65. PubMed ID: 25655773
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Influence of LAS on marine calanoid copepod population dynamics and potential reproduction.
    Christoffersen K; Hansen BW; Johansson LS; Krog E
    Aquat Toxicol; 2003 May; 63(4):405-16. PubMed ID: 12758005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nitrogen fixed by cyanobacteria is utilized by deposit-feeders.
    Karlson AM; Gorokhova E; Elmgren R
    PLoS One; 2014; 9(8):e104460. PubMed ID: 25105967
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toxic effect of the bloom-forming Trichodesmium sp. (Cyanophyta) to the copepod Acartia tonsa.
    Guo C; Tester PA
    Nat Toxins; 1994; 2(4):222-7. PubMed ID: 7952947
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.