These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Apparent and Actual Trajectory Control Depend on the Behavioral Context in Upper Limb Motor Tasks. Cluff T; Scott SH J Neurosci; 2015 Sep; 35(36):12465-76. PubMed ID: 26354914 [TBL] [Abstract][Full Text] [Related]
5. A biologically inspired neural network controller for ballistic arm movements. Bernabucci I; Conforto S; Capozza M; Accornero N; Schmid M; D'Alessio T J Neuroeng Rehabil; 2007 Sep; 4():33. PubMed ID: 17767712 [TBL] [Abstract][Full Text] [Related]
6. Analysis of an optimal control model of multi-joint arm movements. Lan N Biol Cybern; 1997 Feb; 76(2):107-17. PubMed ID: 9116076 [TBL] [Abstract][Full Text] [Related]
7. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics. Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183 [TBL] [Abstract][Full Text] [Related]
8. Biomimetics of human movement: functional or aesthetic? Harris CM Bioinspir Biomim; 2009 Sep; 4(3):033001. PubMed ID: 19567935 [TBL] [Abstract][Full Text] [Related]
9. A model for learning human reaching movements. Karniel A; Inbar GF Biol Cybern; 1997 Sep; 77(3):173-83. PubMed ID: 9352631 [TBL] [Abstract][Full Text] [Related]
10. Human-inspired feedback synergies for environmental interaction with a dexterous robotic hand. Kent BA; Engeberg ED Bioinspir Biomim; 2014 Nov; 9(4):046008. PubMed ID: 25378229 [TBL] [Abstract][Full Text] [Related]
11. The control of hand equilibrium trajectories in multi-joint arm movements. Flash T Biol Cybern; 1987; 57(4-5):257-74. PubMed ID: 3689835 [TBL] [Abstract][Full Text] [Related]
12. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System. Tsai TC; Chiang MH Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171 [TBL] [Abstract][Full Text] [Related]
13. Error generalization as a function of velocity and duration: human reaching movements. Francis JT Exp Brain Res; 2008 Mar; 186(1):23-37. PubMed ID: 18030456 [TBL] [Abstract][Full Text] [Related]
14. A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots. Srinivasa N; Bhattacharyya R; Sundareswara R; Lee C; Grossberg S Neural Netw; 2012 Nov; 35():54-69. PubMed ID: 22954479 [TBL] [Abstract][Full Text] [Related]
15. Cortex inspired model for inverse kinematics computation for a humanoid robotic finger. Gentili RJ; Oh H; Molina J; Reggia JA; Contreras-Vidal JL Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3052-5. PubMed ID: 23366569 [TBL] [Abstract][Full Text] [Related]
16. Extracting motor synergies from random movements for low-dimensional task-space control of musculoskeletal robots. Fu KC; Dalla Libera F; Ishiguro H Bioinspir Biomim; 2015 Oct; 10(5):056016. PubMed ID: 26448530 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic NMES controller for arm movements supported by a passive exoskeleton. Ferrante S; Ambrosini E; Ferrigno G; Pedrocchi A Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1888-91. PubMed ID: 23366282 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of the Leap Motion Controller during the performance of visually-guided upper limb movements. Niechwiej-Szwedo E; Gonzalez D; Nouredanesh M; Tung J PLoS One; 2018; 13(3):e0193639. PubMed ID: 29529064 [TBL] [Abstract][Full Text] [Related]
19. An adaptive integral terminal sliding mode controller to track the human upper limb during front crawl swimming. Haghpanah SA; Khosrowpour E; Hematiyan MR Eur J Sport Sci; 2023 Apr; 23(4):499-509. PubMed ID: 35380513 [TBL] [Abstract][Full Text] [Related]