BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25409859)

  • 21. Lithium potentiates GSK-3β activity by inhibiting phosphoinositide 3-kinase-mediated Akt phosphorylation.
    Tian N; Kanno T; Jin Y; Nishizaki T
    Biochem Biophys Res Commun; 2014 Jul; 450(1):746-9. PubMed ID: 24950409
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibition of glycogen synthase kinase-3β by lithium chloride suppresses 6-hydroxydopamine-induced inflammatory response in primary cultured astrocytes.
    Wang HM; Zhang T; Li Q; Huang JK; Chen RF; Sun XJ
    Neurochem Int; 2013 Nov; 63(5):345-53. PubMed ID: 23871716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glycogen synthase kinase-3beta activity plays very important roles in determining the fate of oxidative stress-inflicted neuronal cells.
    Lee KY; Koh SH; Noh MY; Park KW; Lee YJ; Kim SH
    Brain Res; 2007 Jan; 1129(1):89-99. PubMed ID: 17157278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. SLM, a novel carbazole-based fluorophore attenuates okadaic acid-induced tau hyperphosphorylation via down-regulating GSK-3β activity in SH-SY5Y cells.
    Wu X; Kosaraju J; Tam KY
    Eur J Pharm Sci; 2017 Dec; 110():101-108. PubMed ID: 28359686
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Validating GSK3 as an in vivo target of lithium action.
    O'Brien WT; Klein PS
    Biochem Soc Trans; 2009 Oct; 37(Pt 5):1133-8. PubMed ID: 19754466
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Disruption of the psychiatric risk gene Ankyrin 3 enhances microtubule dynamics through GSK3/CRMP2 signaling.
    Garza JC; Qi X; Gjeluci K; Leussis MP; Basu H; Reis SA; Zhao WN; Piguel NH; Penzes P; Haggarty SJ; Martens GJ; Poelmans G; Petryshen TL
    Transl Psychiatry; 2018 Jul; 8(1):135. PubMed ID: 30046097
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth.
    Castaño Z; Gordon-Weeks PR; Kypta RM
    J Neurochem; 2010 Apr; 113(1):117-30. PubMed ID: 20067585
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of glycogen synthase kinase-3β in ketamine-induced developmental neuroapoptosis in rats.
    Liu JR; Baek C; Han XH; Shoureshi P; Soriano SG
    Br J Anaesth; 2013 Jun; 110 Suppl 1():i3-9. PubMed ID: 23533250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Lithium and synaptic plasticity.
    Salinas PC; Hall AC
    Bipolar Disord; 1999 Dec; 1(2):87-90. PubMed ID: 11252664
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithium treatment enhances estradiol-induced proliferation and hyperplasia formation in the uterus of mice.
    Gunin AG; Emelianov VU; Mironkin IU; Morozov MP; Tolmachev AS
    Eur J Obstet Gynecol Reprod Biol; 2004 May; 114(1):83-91. PubMed ID: 15099877
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Glycogen synthase kinase 3 regulates IL-1β mediated iNOS expression in hepatocytes by down-regulating c-Jun.
    Lakshmanan J; Zhang B; Nweze IC; Du Y; Harbrecht BG
    J Cell Biochem; 2015 Jan; 116(1):133-41. PubMed ID: 25160751
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic inhibits neurofilament transport and induces perikaryal accumulation of phosphorylated neurofilaments: roles of JNK and GSK-3beta.
    DeFuria J; Shea TB
    Brain Res; 2007 Nov; 1181():74-82. PubMed ID: 17961518
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-term exposure to low lithium concentrations stimulates proliferation, modifies stress protein expression pattern and enhances resistance to oxidative stress in SH-SY5Y cells.
    Allagui MS; Nciri R; Rouhaud MF; Murat JC; El Feki A; Croute F; Vincent C
    Neurochem Res; 2009 Mar; 34(3):453-62. PubMed ID: 18688712
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lithium induces morphological differentiation of mouse neuroblastoma cells.
    García-Pérez J; Avila J; Díaz-Nido J
    J Neurosci Res; 1999 Jul; 57(2):261-70. PubMed ID: 10398304
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycogen synthase kinase-3 (GSK3) controls deoxyglucose-induced mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells.
    Ngamsiri P; Watcharasit P; Satayavivad J
    Mitochondrion; 2014 Jan; 14(1):54-63. PubMed ID: 24316184
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lithium-mediated phosphorylation of glycogen synthase kinase-3beta involves PI3 kinase-dependent activation of protein kinase C-alpha.
    Kirshenboim N; Plotkin B; Shlomo SB; Kaidanovich-Beilin O; Eldar-Finkelman H
    J Mol Neurosci; 2004; 24(2):237-45. PubMed ID: 15456937
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuroprotective and neurotrophic effects of long term lithium treatment in mouse brain.
    Riadh N; Allagui MS; Bourogaa E; Vincent C; Croute F; Elfeki A
    Biometals; 2011 Aug; 24(4):747-57. PubMed ID: 21373826
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC.
    Zhou FQ; Zhou J; Dedhar S; Wu YH; Snider WD
    Neuron; 2004 Jun; 42(6):897-912. PubMed ID: 15207235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A molecular cell biology of lithium.
    Williams R; Ryves WJ; Dalton EC; Eickholt B; Shaltiel G; Agam G; Harwood AJ
    Biochem Soc Trans; 2004 Nov; 32(Pt 5):799-802. PubMed ID: 15494019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Glucose dependence of glycogen synthase activity regulation by GSK3 and MEK/ERK inhibitors and angiotensin-(1-7) action on these pathways in cultured human myotubes.
    Montori-Grau M; Tarrats N; Osorio-Conles O; Orozco A; Serrano-Marco L; Vázquez-Carrera M; Gómez-Foix AM
    Cell Signal; 2013 May; 25(5):1318-27. PubMed ID: 23453973
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.