These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 25409922)

  • 21. Detection of neuronal spikes using an adaptive threshold based on the max-min spread sorting method.
    Chan HL; Lin MA; Wu T; Lee ST; Tsai YT; Chao PK
    J Neurosci Methods; 2008 Jul; 172(1):112-21. PubMed ID: 18508127
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An unsupervised automatic method for sorting neuronal spike waveforms in awake and freely moving animals.
    Aksenova TI; Chibirova OK; Dryga OA; Tetko IV; Benabid AL; Villa AE
    Methods; 2003 Jun; 30(2):178-87. PubMed ID: 12725785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Efficient sequential Bayesian inference method for real-time detection and sorting of overlapped neural spikes.
    Haga T; Fukayama O; Takayama Y; Hoshino T; Mabuchi K
    J Neurosci Methods; 2013 Sep; 219(1):92-103. PubMed ID: 23856211
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Signal-to-noise ratio improvement in multiple electrode recording.
    Musial PG; Baker SN; Gerstein GL; King EA; Keating JG
    J Neurosci Methods; 2002 Mar; 115(1):29-43. PubMed ID: 11897361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated spike sorting using density grid contour clustering and subtractive waveform decomposition.
    Vargas-Irwin C; Donoghue JP
    J Neurosci Methods; 2007 Aug; 164(1):1-18. PubMed ID: 17512603
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.
    Regalia G; Coelli S; Biffi E; Ferrigno G; Pedrocchi A
    Comput Intell Neurosci; 2016; 2016():8416237. PubMed ID: 27239191
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A stationary wavelet transform and a time-frequency based spike detection algorithm for extracellular recorded data.
    Lieb F; Stark HG; Thielemann C
    J Neural Eng; 2017 Jun; 14(3):036013. PubMed ID: 28272020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracellular recordings from locally dense microelectrode arrays coupled to dissociated cortical cultures.
    Berdondini L; Massobrio P; Chiappalone M; Tedesco M; Imfeld K; Maccione A; Gandolfo M; Koudelka-Hep M; Martinoia S
    J Neurosci Methods; 2009 Mar; 177(2):386-96. PubMed ID: 19027792
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tetrodes markedly improve the reliability and yield of multiple single-unit isolation from multi-unit recordings in cat striate cortex.
    Gray CM; Maldonado PE; Wilson M; McNaughton B
    J Neurosci Methods; 1995 Dec; 63(1-2):43-54. PubMed ID: 8788047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of the stability of intracortical microelectrode arrays.
    Liu X; McCreery DB; Bullara LA; Agnew WF
    IEEE Trans Neural Syst Rehabil Eng; 2006 Mar; 14(1):91-100. PubMed ID: 16562636
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis.
    Leibig C; Wachtler T; Zeck G
    J Neurosci Methods; 2016 Sep; 271():1-13. PubMed ID: 27317497
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expert-like performance of an autonomous spike tracking algorithm in isolating and maintaining single units in the macaque cortex.
    Chakrabarti S; Hebert P; Wolf MT; Campos M; Burdick JW; Gail A
    J Neurosci Methods; 2012 Mar; 205(1):72-85. PubMed ID: 22227443
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantifying the isolation quality of extracellularly recorded action potentials.
    Joshua M; Elias S; Levine O; Bergman H
    J Neurosci Methods; 2007 Jul; 163(2):267-82. PubMed ID: 17477972
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fractal dimension analysis for spike detection in low SNR extracellular signals.
    Salmasi M; Büttner U; Glasauer S
    J Neural Eng; 2016 Jun; 13(3):036004. PubMed ID: 27064604
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From spike to graph--a complete automated single-spike analysis.
    Friedrich R; Ashery U
    J Neurosci Methods; 2010 Nov; 193(2):271-80. PubMed ID: 20869399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spike sorting for polytrodes: a divide and conquer approach.
    Swindale NV; Spacek MA
    Front Syst Neurosci; 2014; 8():6. PubMed ID: 24574979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Setting adaptive spike detection threshold for smoothed TEO based on robust statistics theory.
    Semmaoui H; Drolet J; Lakhssassi A; Sawan M
    IEEE Trans Biomed Eng; 2012 Feb; 59(2):474-82. PubMed ID: 22084039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple method for efficient spike detection in multiunit recordings.
    Borghi T; Gusmeroli R; Spinelli AS; Baranauskas G
    J Neurosci Methods; 2007 Jun; 163(1):176-80. PubMed ID: 17391772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accurate spike sorting for multi-unit recordings.
    Takekawa T; Isomura Y; Fukai T
    Eur J Neurosci; 2010 Jan; 31(2):263-72. PubMed ID: 20074217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spike detection from noisy neural data in linear-probe recordings.
    Takekawa T; Ota K; Murayama M; Fukai T
    Eur J Neurosci; 2014 Jun; 39(11):1943-50. PubMed ID: 24827558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.