These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 25410130)

  • 21. Design of a monopole-antenna-based resonant nanocavity for detection of optical power from hybrid plasmonic waveguides.
    Ooi KJ; Bai P; Gu MX; Ang LK
    Opt Express; 2011 Aug; 19(18):17075-85. PubMed ID: 21935068
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Subwavelength metallic cavities with high-Q resonance modes.
    Ishihara N; Kurosawa H; Takemoto R; Jahan NA; Nakajima H; Kumano H; Suemune I
    Nanotechnology; 2015 Feb; 26(8):085201. PubMed ID: 25648417
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strong Optomechanical Interaction in Hybrid Plasmonic-Photonic Crystal Nanocavities with Surface Acoustic Waves.
    Lin TR; Lin CH; Hsu JC
    Sci Rep; 2015 Sep; 5():13782. PubMed ID: 26346448
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic tuning of the Q factor in a photonic crystal nanocavity through photonic transitions.
    Wang B; Wu JF; Li C; Li ZY
    Opt Lett; 2018 Aug; 43(16):3945-3948. PubMed ID: 30106923
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A chip-scale integrated cavity-electro-optomechanics platform.
    Winger M; Blasius TD; Mayer Alegre TP; Safavi-Naeini AH; Meenehan S; Cohen J; Stobbe S; Painter O
    Opt Express; 2011 Dec; 19(25):24905-21. PubMed ID: 22273884
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Vertical plasmonic resonant nanocavities.
    Zhu X; Zhang J; Xu J; Yu D
    Nano Lett; 2011 Mar; 11(3):1117-21. PubMed ID: 21280659
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasmonic amplification with ultra-high optical gain at room temperature.
    Liu N; Wei H; Li J; Wang Z; Tian X; Pan A; Xu H
    Sci Rep; 2013; 3():1967. PubMed ID: 23752666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Entangled Nanoplasmonic Cavities for Estimating Thickness of Surface-Adsorbed Layers.
    Mataji-Kojouri A; Ozen MO; Shahabadi M; Inci F; Demirci U
    ACS Nano; 2020 Jul; 14(7):8518-8527. PubMed ID: 32639713
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confined three-dimensional plasmon modes inside a ring-shaped nanocavity on a silver film imaged by cathodoluminescence microscopy.
    Zhu XL; Ma Y; Zhang JS; Xu J; Wu XF; Zhang Y; Han XB; Fu Q; Liao ZM; Chen L; Yu DP
    Phys Rev Lett; 2010 Sep; 105(12):127402. PubMed ID: 20867670
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity.
    Liu Z; Liu G; Liu X; Huang S; Wang Y; Pan P; Liu M
    Nanotechnology; 2015 Jun; 26(23):235702. PubMed ID: 25987526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna.
    Cui Y; He S
    Opt Lett; 2009 Jan; 34(1):16-8. PubMed ID: 19109625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stimulated emission of surface plasmon polaritons in a microcylinder cavity.
    Kitur JK; Podolskiy VA; Noginov MA
    Phys Rev Lett; 2011 May; 106(18):183903. PubMed ID: 21635088
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polarization-Independent Multiple Fano Resonances in Plasmonic Nonamers for Multimode-Matching Enhanced Multiband Second-Harmonic Generation.
    Liu SD; Leong ES; Li GC; Hou Y; Deng J; Teng JH; Ong HC; Lei DY
    ACS Nano; 2016 Jan; 10(1):1442-53. PubMed ID: 26727133
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors.
    Akselrod GM; Ming T; Argyropoulos C; Hoang TB; Lin Y; Ling X; Smith DR; Kong J; Mikkelsen MH
    Nano Lett; 2015 May; 15(5):3578-84. PubMed ID: 25914964
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic control of the Q factor in a photonic crystal nanocavity.
    Tanaka Y; Upham J; Nagashima T; Sugiya T; Asano T; Noda S
    Nat Mater; 2007 Nov; 6(11):862-5. PubMed ID: 17767163
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultra-Narrow-Band Filter Based on High Q Factor in Metallic Nanoslit Arrays.
    Guo L; Guo M; Yang H; Ma J; Chen S
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32932621
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lifetime of THz acoustic nanocavity modes.
    Rozas G; Winter MF; Jusserand B; Fainstein A; Perrin B; Semenova E; Lemaître A
    Phys Rev Lett; 2009 Jan; 102(1):015502. PubMed ID: 19257206
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hybrid photonic-plasmonic crystal nanocavities.
    Yang X; Ishikawa A; Yin X; Zhang X
    ACS Nano; 2011 Apr; 5(4):2831-8. PubMed ID: 21384850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nonlinear pulsed excitation of high-Q optical modes of plasmonic nanocavities.
    Biris CG; Panoiu NC
    Opt Express; 2010 Aug; 18(16):17165-79. PubMed ID: 20721105
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultrasensitive biosensors using enhanced Fano resonances in capped gold nanoslit arrays.
    Lee KL; Huang JB; Chang JW; Wu SH; Wei PK
    Sci Rep; 2015 Feb; 5():8547. PubMed ID: 25708955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.