These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 25410264)

  • 1. A cautionary note concerning the use of stabilized weights in marginal structural models.
    Talbot D; Atherton J; Rossi AM; Bacon SL; Lefebvre G
    Stat Med; 2015 Feb; 34(5):812-23. PubMed ID: 25410264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-dimensional propensity score algorithm in comparative effectiveness research with time-varying interventions.
    Neugebauer R; Schmittdiel JA; Zhu Z; Rassen JA; Seeger JD; Schneeweiss S
    Stat Med; 2015 Feb; 34(5):753-81. PubMed ID: 25488047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differences between marginal structural models and conventional models in their exposure effect estimates: a systematic review.
    Suarez D; Borràs R; Basagaña X
    Epidemiology; 2011 Jul; 22(4):586-8. PubMed ID: 21540744
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive truncated weighting for improving marginal structural model estimation of treatment effects informally censored by subsequent therapy.
    Bai X; Liu J; Li L; Faries D
    Pharm Stat; 2015; 14(6):448-54. PubMed ID: 26436533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On a preference-based instrumental variable approach in reducing unmeasured confounding-by-indication.
    Li Y; Lee Y; Wolfe RA; Morgenstern H; Zhang J; Port FK; Robinson BM
    Stat Med; 2015 Mar; 34(7):1150-68. PubMed ID: 25546152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accuracy of conventional and marginal structural Cox model estimators: a simulation study.
    Xiao Y; Abrahamowicz M; Moodie EE
    Int J Biostat; 2010; 6(2):Article 13. PubMed ID: 21969997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Utility of time-dependent inverse-probability-of-treatment weights to analyze observational cohorts in the intensive care unit.
    Pirracchio R; Sprung CL; Payen D; Chevret S
    J Clin Epidemiol; 2011 Dec; 64(12):1373-82. PubMed ID: 21652175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Subtleties of Inverse Probability Weighting and Marginal Structural Models.
    Breskin A; Cole SR; Westreich D
    Epidemiology; 2018 May; 29(3):352-355. PubMed ID: 29384789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fitting marginal structural models: estimating covariate-treatment associations in the reweighted data set can guide model fitting.
    Pullenayegum EM; Lam C; Manlhiot C; Feldman BM
    J Clin Epidemiol; 2008 Sep; 61(9):875-81. PubMed ID: 18486447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal inference in survival analysis using longitudinal observational data: Sequential trials and marginal structural models.
    Keogh RH; Gran JM; Seaman SR; Davies G; Vansteelandt S
    Stat Med; 2023 Jun; 42(13):2191-2225. PubMed ID: 37086186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of error-in-confounders on the estimation of the causal parameter when using marginal structural models and inverse probability-of-treatment weights: a simulation study.
    Regier MD; Moodie EE; Platt RW
    Int J Biostat; 2014; 10(1):1-15. PubMed ID: 24445244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural equation modeling versus marginal structural modeling for assessing mediation in the presence of posttreatment confounding.
    Moerkerke B; Loeys T; Vansteelandt S
    Psychol Methods; 2015 Jun; 20(2):204-20. PubMed ID: 25751514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A graphical perspective of marginal structural models: An application for the estimation of the effect of physical activity on blood pressure.
    Talbot D; Rossi AM; Bacon SL; Atherton J; Lefebvre G
    Stat Methods Med Res; 2018 Aug; 27(8):2428-2436. PubMed ID: 27920366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginal structural models as a tool for standardization.
    Sato T; Matsuyama Y
    Epidemiology; 2003 Nov; 14(6):680-6. PubMed ID: 14569183
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures.
    Hernán MA; Brumback BA; Robins JM
    Stat Med; 2002 Jun; 21(12):1689-709. PubMed ID: 12111906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using Balancing Weights to Target the Treatment Effect on the Treated when Overlap is Poor.
    Ben-Michael E; Keele L
    Epidemiology; 2023 Sep; 34(5):637-644. PubMed ID: 37368935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Missing data in the exposure of interest and marginal structural models: a simulation study based on the Framingham Heart Study.
    Shortreed SM; Forbes AB
    Stat Med; 2010 Feb; 29(4):431-43. PubMed ID: 20025082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Marginal structural models might overcome confounding when analyzing multiple treatment effects in observational studies.
    Suarez D; Haro JM; Novick D; Ochoa S
    J Clin Epidemiol; 2008 Jun; 61(6):525-30. PubMed ID: 18471655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimal probability weights for estimating causal effects of time-varying treatments with marginal structural Cox models.
    Santacatterina M; García-Pareja C; Bellocco R; Sönnerborg A; Ekström AM; Bottai M
    Stat Med; 2019 May; 38(10):1891-1902. PubMed ID: 30592073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Causal Methods for Observational Research: A Primer.
    Almasi-Hashiani A; Nedjat S; Mansournia MA
    Arch Iran Med; 2018 Apr; 21(4):164-169. PubMed ID: 29693407
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.