BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25410491)

  • 21. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.
    Szabo J; Minamyer S
    Environ Int; 2014 Nov; 72():119-23. PubMed ID: 24565672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cloud point extraction and spectrophotometric determination of mercury species at trace levels in environmental samples.
    Ulusoy Hİ; Gürkan R; Ulusoy S
    Talanta; 2012 Jan; 88():516-23. PubMed ID: 22265535
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gold nanoparticle-aluminum oxide adsorbent for efficient removal of mercury species from natural waters.
    Lo SI; Chen PC; Huang CC; Chang HT
    Environ Sci Technol; 2012 Mar; 46(5):2724-30. PubMed ID: 22309110
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal and preconcentration of inorganic and methyl mercury from aqueous media using a sorbent prepared from the plant Coriandrum sativum.
    Karunasagar D; Krishna MV; Rao SV; Arunachalam J
    J Hazard Mater; 2005 Feb; 118(1-3):133-9. PubMed ID: 15721537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adsorption of Ag, Cu and Hg from aqueous solutions using expanded perlite.
    Ghassabzadeh H; Mohadespour A; Torab-Mostaedi M; Zaheri P; Maragheh MG; Taheri H
    J Hazard Mater; 2010 May; 177(1-3):950-5. PubMed ID: 20096505
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Specific mercury(II) adsorption by thymine-based sorbent.
    Liu X; Qi C; Bing T; Cheng X; Shangguan D
    Talanta; 2009 Apr; 78(1):253-8. PubMed ID: 19174234
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Capture and Effective Sensing of Cr
    Lin ZJ; Zheng HQ; Zheng HY; Lin LP; Xin Q; Cao R
    Inorg Chem; 2017 Nov; 56(22):14178-14188. PubMed ID: 29112384
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Preparation and characterization of a novel nano-absorbent based on multi-cyanoguanidine modified magnetic chitosan and its highly effective recovery for Hg(II) in aqueous phase.
    Wang Y; Qi Y; Li Y; Wu J; Ma X; Yu C; Ji L
    J Hazard Mater; 2013 Sep; 260():9-15. PubMed ID: 23742953
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Removal of mercury species with dithiocarbamate-anchored polymer/organosmectite composites.
    Say R; Birlik E; Erdemgil Z; Denizli A; Ersöz A
    J Hazard Mater; 2008 Feb; 150(3):560-4. PubMed ID: 17560027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The fast removal of low concentration of cadmium(II) from aqueous media by chelating polymers with salicylaldehyde units.
    Amoyaw PA; Williams M; Bu XR
    J Hazard Mater; 2009 Oct; 170(1):22-6. PubMed ID: 19501464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sources and remediation for mercury contamination in aquatic systems--a literature review.
    Wang Q; Kim D; Dionysiou DD; Sorial GA; Timberlake D
    Environ Pollut; 2004 Sep; 131(2):323-36. PubMed ID: 15234099
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Porous Nanobimetallic Fe-Mn Cubes with High Valent Mn and Highly Efficient Removal of Arsenic(III).
    Zhang G; Xu X; Ji Q; Liu R; Liu H; Qu J; Li J
    ACS Appl Mater Interfaces; 2017 May; 9(17):14868-14877. PubMed ID: 28406605
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capture of mercury ions by natural and industrial materials.
    Di Natale F; Lancia A; Molino A; Di Natale M; Karatza D; Musmarra D
    J Hazard Mater; 2006 May; 132(2-3):220-5. PubMed ID: 16271826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Taguchi optimization approach for Pb(II) and Hg(II) removal from aqueous solutions using modified mesoporous carbon.
    Zolfaghari G; Esmaili-Sari A; Anbia M; Younesi H; Amirmahmoodi S; Ghafari-Nazari A
    J Hazard Mater; 2011 Sep; 192(3):1046-55. PubMed ID: 21733626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. High efficient removal of mercury from aqueous solution by polyaniline/humic acid nanocomposite.
    Zhang Y; Li Q; Sun L; Tang R; Zhai J
    J Hazard Mater; 2010 Mar; 175(1-3):404-9. PubMed ID: 19896766
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Selective removal of mercury(II) from wastewater using polythioamides.
    Kagaya S; Miyazaki H; Ito M; Tohda K; Kanbara T
    J Hazard Mater; 2010 Mar; 175(1-3):1113-5. PubMed ID: 19942346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of different extraction agents on metal and organic contaminant removal from a field soil.
    Khodadoust AP; Reddy KR; Maturi K
    J Hazard Mater; 2005 Jan; 117(1):15-24. PubMed ID: 15621349
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents.
    Vernon JD; Bonzongo JC
    J Hazard Mater; 2014 Jul; 276():408-14. PubMed ID: 24929302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sea-urchin-like iron oxide nanostructures for water treatment.
    Lee HU; Lee SC; Lee YC; Vrtnik S; Kim C; Lee S; Lee YB; Nam B; Lee JW; Park SY; Lee SM; Lee J
    J Hazard Mater; 2013 Nov; 262():130-6. PubMed ID: 24021165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Decontamination of bisphenol A from aqueous solution by graphene adsorption.
    Xu J; Wang L; Zhu Y
    Langmuir; 2012 Jun; 28(22):8418-25. PubMed ID: 22571829
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.