These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25410536)

  • 1. A structured three-dimensional polymer electrolyte with enlarged active reaction zone for Li-O2 batteries.
    Bonnet-Mercier N; Wong RA; Thomas ML; Dutta A; Yamanaka K; Yogi C; Ohta T; Byon HR
    Sci Rep; 2014 Nov; 4():7127. PubMed ID: 25410536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Energy Density Li-O
    Lee H; Lee DJ; Kim M; Kim H; Cho YS; Kwon HJ; Lee HC; Park CR; Im D
    ACS Appl Mater Interfaces; 2020 Apr; 12(15):17385-17395. PubMed ID: 32212667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid-free lithium-oxygen batteries.
    Balaish M; Peled E; Golodnitsky D; Ein-Eli Y
    Angew Chem Int Ed Engl; 2015 Jan; 54(2):436-40. PubMed ID: 25283299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-Dimensional Porous Alginate Fiber Membrane Reinforced PEO-Based Solid Polymer Electrolyte for Safe and High-Performance Lithium Ion Batteries.
    Zeng F; Sun Y; Hui B; Xia Y; Zou Y; Zhang X; Yang D
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43805-43812. PubMed ID: 32897049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring PVFM-Based Janus Membrane-Supporting Gel Polymer Electrolyte for Highly Durable Li-O
    Meng N; Lian F; Li Y; Zhao X; Zhang L; Lu S; Li H
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22237-22247. PubMed ID: 29897229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries.
    Sun YK; Myung ST; Shin HS; Bae YC; Yoon CS
    J Phys Chem B; 2006 Apr; 110(13):6810-5. PubMed ID: 16570989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Revealing the reaction mechanisms of Li-O
    Luo L; Liu B; Song S; Xu W; Zhang JG; Wang C
    Nat Nanotechnol; 2017 Jul; 12(6):535-539. PubMed ID: 28346458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Reactive Sites and Transport Limitations of Oxygen Reactions in Aprotic Lithium-O2 Batteries at the Stage of Sudden Death.
    Wang J; Zhang Y; Guo L; Wang E; Peng Z
    Angew Chem Int Ed Engl; 2016 Apr; 55(17):5201-5. PubMed ID: 26970228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A High Capacity Gas Diffusion Electrode for Li-O
    Jenkins M; Dewar D; Lagnoni M; Yang S; Rees GJ; Bertei A; Johnson LR; Gao X; Bruce PG
    Adv Mater; 2024 Oct; 36(41):e2405715. PubMed ID: 39101286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(Ethylene Oxide)-based Electrolyte for Solid-State-Lithium-Batteries with High Voltage Positive Electrodes: Evaluating the Role of Electrolyte Oxidation in Rapid Cell Failure.
    Homann G; Stolz L; Nair J; Laskovic IC; Winter M; Kasnatscheew J
    Sci Rep; 2020 Mar; 10(1):4390. PubMed ID: 32152474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cation-π interactions on the cell voltage of carbon nanotube-based Li batteries.
    Gao S; Shi G; Fang H
    Nanoscale; 2016 Jan; 8(3):1451-5. PubMed ID: 26676257
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binder-Free and Carbon-Free 3D Porous Air Electrode for Li-O2 Batteries with High Efficiency, High Capacity, and Long Life.
    Luo WB; Gao XW; Shi DQ; Chou SL; Wang JZ; Liu HK
    Small; 2016 Jun; 12(22):3031-8. PubMed ID: 27120699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simple synthesis of highly catalytic carbon-free MnCo2O4@Ni as an oxygen electrode for rechargeable Li-O2 batteries with long-term stability.
    Kalubarme RS; Jadhav HS; Ngo DT; Park GE; Fisher JG; Choi YI; Ryu WH; Park CJ
    Sci Rep; 2015 Aug; 5():13266. PubMed ID: 26292965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How To Improve Capacity and Cycling Stability for Next Generation Li-O2 Batteries: Approach with a Solid Electrolyte and Elevated Redox Mediator Concentrations.
    Bergner BJ; Busche MR; Pinedo R; Berkes BB; Schröder D; Janek J
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7756-65. PubMed ID: 26942895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hollow Mesoporous Fe
    Xue H; Ma Y; Wang T; Gong H; Gao B; Fan X; Yan J; Meng X; Zhang S; He J
    Front Chem; 2019; 7():511. PubMed ID: 31403040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of Reaction Kinetics and Oxygen Crossover in aprotic Li-O2 Batteries Based on a Dimethyl Sulfoxide Electrolyte.
    Marinaro M; Balasubramanian P; Gucciardi E; Theil S; Jörissen L; Wohlfahrt-Mehrens M
    ChemSusChem; 2015 Sep; 8(18):3139-45. PubMed ID: 26249807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries.
    Yang C; Wong RA; Hong M; Yamanaka K; Ohta T; Byon HR
    Nano Lett; 2016 May; 16(5):2969-74. PubMed ID: 27105122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Au Microlattices as Positive Electrodes for Li-O2 Batteries.
    Xu C; Gallant BM; Wunderlich PU; Lohmann T; Greer JR
    ACS Nano; 2015 Jun; 9(6):5876-83. PubMed ID: 25950649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Synthesis of Birnessite δ-MnO
    Liu Q; Hu Z; Li L; Li W; Zou C; Jin H; Wang S; Chou SL
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16585-16593. PubMed ID: 33819005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.