BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

810 related articles for article (PubMed ID: 25410609)

  • 1. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9.
    Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT
    Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids.
    Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T
    Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems.
    Sakuma T; Nakade S; Sakane Y; Suzuki KT; Yamamoto T
    Nat Protoc; 2016 Jan; 11(1):118-33. PubMed ID: 26678082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish.
    Auer TO; Del Bene F
    Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene cassette knock-in in mammalian cells and zygotes by enhanced MMEJ.
    Aida T; Nakade S; Sakuma T; Izu Y; Oishi A; Mochida K; Ishikubo H; Usami T; Aizawa H; Yamamoto T; Tanaka K
    BMC Genomics; 2016 Nov; 17(1):979. PubMed ID: 27894274
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homologous recombination-mediated targeted integration in monkey embryos using TALE nucleases.
    Chu C; Yang Z; Yang J; Yan L; Si C; Kang Y; Chen Z; Chen Y; Ji W; Niu Y
    BMC Biotechnol; 2019 Jan; 19(1):7. PubMed ID: 30646876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair.
    Suzuki KT; Sakane Y; Suzuki M; Yamamoto T
    Methods Mol Biol; 2018; 1865():91-103. PubMed ID: 30151761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted knock-in of an scFv-Fc antibody gene into the hprt locus of Chinese hamster ovary cells using CRISPR/Cas9 and CRIS-PITCh systems.
    Kawabe Y; Komatsu S; Komatsu S; Murakami M; Ito A; Sakuma T; Nakamura T; Yamamoto T; Kamihira M
    J Biosci Bioeng; 2018 May; 125(5):599-605. PubMed ID: 29295784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome Editing of Silkworms.
    Tsubota T; Sezutsu H
    Methods Mol Biol; 2017; 1630():205-218. PubMed ID: 28643261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
    Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A
    Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Establishment of expanded and streamlined pipeline of PITCh knock-in - a web-based design tool for MMEJ-mediated gene knock-in, PITCh designer, and the variations of PITCh, PITCh-TG and PITCh-KIKO.
    Nakamae K; Nishimura Y; Takenaga M; Nakade S; Sakamoto N; Ide H; Sakuma T; Yamamoto T
    Bioengineered; 2017 May; 8(3):302-308. PubMed ID: 28453368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9.
    Du H; Zeng X; Zhao M; Cui X; Wang Q; Yang H; Cheng H; Yu D
    J Biotechnol; 2016 Jan; 217():90-7. PubMed ID: 26603121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9-mediated knockout of factors in non-homologous end joining pathway enhances gene targeting in silkworm cells.
    Zhu L; Mon H; Xu J; Lee JM; Kusakabe T
    Sci Rep; 2015 Dec; 5():18103. PubMed ID: 26657947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TALEN-mediated homologous recombination in Daphnia magna.
    Nakanishi T; Kato Y; Matsuura T; Watanabe H
    Sci Rep; 2015 Dec; 5():18312. PubMed ID: 26674741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient method to enrich for knock-out and knock-in cellular clones using the CRISPR/Cas9 system.
    Niccheri F; Pecori R; Conticello SG
    Cell Mol Life Sci; 2017 Sep; 74(18):3413-3423. PubMed ID: 28421278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system.
    Xu A; Qin C; Lang Y; Wang M; Lin M; Li C; Zhang R; Tang J
    Biotechnol Lett; 2015 Jun; 37(6):1265-72. PubMed ID: 25724716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of microhomologous-mediated site-specific integrated LacS gene cow using TALENs.
    Su X; Wang S; Su G; Zheng Z; Zhang J; Ma Y; Liu Z; Zhou H; Zhang Y; Zhang L
    Theriogenology; 2018 Oct; 119():282-288. PubMed ID: 30075414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.