BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

682 related articles for article (PubMed ID: 25410609)

  • 1. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9.
    Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT
    Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair.
    Auer TO; Duroure K; De Cian A; Concordet JP; Del Bene F
    Genome Res; 2014 Jan; 24(1):142-53. PubMed ID: 24179142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient targeted integration directed by short homology in zebrafish and mammalian cells.
    Wierson WA; Welker JM; Almeida MP; Mann CM; Webster DA; Torrie ME; Weiss TJ; Kambakam S; Vollbrecht MK; Lan M; McKeighan KC; Levey J; Ming Z; Wehmeier A; Mikelson CS; Haltom JA; Kwan KM; Chien CB; Balciunas D; Ekker SC; Clark KJ; Webber BR; Moriarity BS; Solin SL; Carlson DF; Dobbs DL; McGrail M; Essner J
    Elife; 2020 May; 9():. PubMed ID: 32412410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single crossover-mediated targeted nucleotide substitution and knock-in strategies with CRISPR/Cas9 system in the rice blast fungus.
    Yamato T; Handa A; Arazoe T; Kuroki M; Nozaka A; Kamakura T; Ohsato S; Arie T; Kuwata S
    Sci Rep; 2019 May; 9(1):7427. PubMed ID: 31092866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homology-mediated end joining-based targeted integration using CRISPR/Cas9.
    Yao X; Wang X; Hu X; Liu Z; Liu J; Zhou H; Shen X; Wei Y; Huang Z; Ying W; Wang Y; Nie YH; Zhang CC; Li S; Cheng L; Wang Q; Wu Y; Huang P; Sun Q; Shi L; Yang H
    Cell Res; 2017 Jun; 27(6):801-814. PubMed ID: 28524166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient chromosomal gene modification with CRISPR/cas9 and PCR-based homologous recombination donors in cultured Drosophila cells.
    Böttcher R; Hollmann M; Merk K; Nitschko V; Obermaier C; Philippou-Massier J; Wieland I; Gaul U; Förstemann K
    Nucleic Acids Res; 2014 Jun; 42(11):e89. PubMed ID: 24748663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized CRISPR/Cas9 strategy for homology-directed multiple targeted integration of transgenes in CHO cells.
    Shin SW; Lee JS
    Biotechnol Bioeng; 2020 Jun; 117(6):1895-1903. PubMed ID: 32086804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of Multiple Strategies for Precision Transgene Knock-In in
    Wang L; Sun J; Liu Z; Zheng Q; Wang G
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated efficient and precise targeted integration of donor DNA harboring double cleavage sites in Xenopus tropicalis.
    Mao CZ; Zheng L; Zhou YM; Wu HY; Xia JB; Liang CQ; Guo XF; Peng WT; Zhao H; Cai WB; Kim SK; Park KS; Cai DQ; Qi XF
    FASEB J; 2018 Jun; ():fj201800093. PubMed ID: 29897811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Principles of Genetic Engineering.
    Lanigan TM; Kopera HC; Saunders TL
    Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32164255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An expanded toolkit for
    Kanca O; Zirin J; Hu Y; Tepe B; Dutta D; Lin WW; Ma L; Ge M; Zuo Z; Liu LP; Levis RW; Perrimon N; Bellen HJ
    Elife; 2022 Jun; 11():. PubMed ID: 35723254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gene Knock-Ins in
    Bosch JA; Colbeth R; Zirin J; Perrimon N
    Genetics; 2020 Jan; 214(1):75-89. PubMed ID: 31685521
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient CRISPR-based strategy to insert small and large fragments of DNA using short homology arms.
    Kanca O; Zirin J; Garcia-Marques J; Knight SM; Yang-Zhou D; Amador G; Chung H; Zuo Z; Ma L; He Y; Lin WW; Fang Y; Ge M; Yamamoto S; Schulze KL; Hu Y; Spradling AC; Mohr SE; Perrimon N; Bellen HJ
    Elife; 2019 Nov; 8():. PubMed ID: 31674908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. REMOVER-PITCh: microhomology-assisted long-range gene replacement with highly multiplexed CRISPR-Cas9.
    Matsuzaki S; Sakuma T; Yamamoto T
    In Vitro Cell Dev Biol Anim; 2024 Feb; ():. PubMed ID: 38334880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient Large DNA Fragment Knock-in by Long dsDNA with 3'-Overhangs Mediated CRISPR Knock-in (LOCK) in Mammalian Cells.
    Han W; Liang H; Bao J
    Bio Protoc; 2023 Oct; 13(20):e4853. PubMed ID: 37900108
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GeneWeld: Efficient Targeted Integration Directed by Short Homology in Zebrafish.
    Welker JM; Wierson WA; Almeida MP; Mann CM; Torrie ME; Ming Z; Ekker SC; Clark KJ; Dobbs DL; Essner JJ; McGrail M
    Bio Protoc; 2021 Jul; 11(14):e4100. PubMed ID: 34395736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs.
    Yao J; Huang J; Hai T; Wang X; Qin G; Zhang H; Wu R; Cao C; Xi JJ; Yuan Z; Zhao J
    Sci Rep; 2014 Nov; 4():6926. PubMed ID: 25370805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sharpening the Molecular Scissors: Advances in Gene-Editing Technology.
    Broeders M; Herrero-Hernandez P; Ernst MPT; van der Ploeg AT; Pijnappel WWMP
    iScience; 2020 Jan; 23(1):100789. PubMed ID: 31901636
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of Glyceraldehyde-3-Phosphate Dehydrogenase Gene as an Alternative Safe Harbor Locus in Pig Genome.
    Han X; Xiong Y; Zhao C; Xie S; Li C; Li X; Liu X; Li K; Zhao S; Ruan J
    Genes (Basel); 2019 Aug; 10(9):. PubMed ID: 31470649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. STAR: a simple TAL effector assembly reaction using isothermal assembly.
    Gogolok S; Garcia-Diaz C; Pollard SM
    Sci Rep; 2016 Sep; 6():33209. PubMed ID: 27615025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.