These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 25410708)

  • 1. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.
    Mera-Adasme R; Sadeghian K; Sundholm D; Ochsenfeld C
    J Phys Chem B; 2014 Nov; 118(46):13106-11. PubMed ID: 25410708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New force field parameters for metalloproteins I: Divalent copper ion centers including three histidine residues and an oxygen-ligated amino acid residue.
    Wise O; Coskuner O
    J Comput Chem; 2014 Jun; 35(17):1278-89. PubMed ID: 24777820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of mutation and misfolding of Cu-Zn SOD1 protein.
    Keerthana SP; Kolandaivel P
    J Biomol Struct Dyn; 2015; 33(1):167-83. PubMed ID: 24320678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Valence state parameters of all transition metal atoms in metalloproteins--development of ABEEMσπ fluctuating charge force field.
    Yang ZZ; Wang JJ; Zhao DX
    J Comput Chem; 2014 Sep; 35(23):1690-706. PubMed ID: 25042901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force fields including charge transfer and local polarization effects: Application to proteins containing multi/heavy metal ions.
    Sakharov DV; Lim C
    J Comput Chem; 2009 Jan; 30(2):191-202. PubMed ID: 18566982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarizable molecular mechanics studies of Cu(I)/Zn(II) superoxide dismutase: bimetallic binding site and structured waters.
    Gresh N; El Hage K; Perahia D; Piquemal JP; Berthomieu C; Berthomieu D
    J Comput Chem; 2014 Nov; 35(29):2096-106. PubMed ID: 25212748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined use of XAFS and crystallography for studying protein-ligand interactions in metalloproteins.
    Strange RW; Hasnain SS
    Methods Mol Biol; 2005; 305():167-96. PubMed ID: 15939998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of QM/MM docking and its applications to metalloproteins.
    Cho AE; Rinaldo D
    J Comput Chem; 2009 Dec; 30(16):2609-16. PubMed ID: 19373896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.
    Schmiedekamp A; Nanda V
    J Inorg Biochem; 2009 Jul; 103(7):1054-60. PubMed ID: 19501913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ATCUN-like metal-binding motifs in proteins: identification and characterization by crystal structure and sequence analysis.
    Sankararamakrishnan R; Verma S; Kumar S
    Proteins; 2005 Jan; 58(1):211-21. PubMed ID: 15508143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal ligand aromatic cation-pi interactions in metalloproteins: ligands coordinated to metal interact with aromatic residues.
    Zarić SD; Popović DM; Knapp EW
    Chemistry; 2000 Nov; 6(21):3935-42. PubMed ID: 11126954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First-second shell interactions in metal binding sites in proteins: a PDB survey and DFT/CDM calculations.
    Dudev T; Lin YL; Dudev M; Lim C
    J Am Chem Soc; 2003 Mar; 125(10):3168-80. PubMed ID: 12617685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper and zinc binding properties of the N-terminal histidine-rich sequence of Haemophilus ducreyi Cu,Zn superoxide dismutase.
    Paksi Z; Jancsó A; Pacello F; Nagy N; Battistoni A; Gajda T
    J Inorg Biochem; 2008 Sep; 102(9):1700-10. PubMed ID: 18565588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The design of metal-binding sites in proteins.
    Regan L
    Annu Rev Biophys Biomol Struct; 1993; 22():257-87. PubMed ID: 8347991
    [No Abstract]   [Full Text] [Related]  

  • 15. Unveiling the unfolding pathway of FALS associated G37R SOD1 mutant: a computational study.
    Milardi D; Pappalardo M; Grasso DM; La Rosa C
    Mol Biosyst; 2010 Jun; 6(6):1032-9. PubMed ID: 20485746
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
    Ryde U
    Dalton Trans; 2007 Feb; (6):607-25. PubMed ID: 17268593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale Quantum Refinement Approaches for Metalloproteins.
    Yan Z; Li X; Chung LW
    J Chem Theory Comput; 2021 Jun; 17(6):3783-3796. PubMed ID: 34032440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MCPB.py: A Python Based Metal Center Parameter Builder.
    Li P; Merz KM
    J Chem Inf Model; 2016 Apr; 56(4):599-604. PubMed ID: 26913476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the general physicochemical properties of noncovalent interactions involving tyrosine side chain as a second-shell ligand in biomolecular metal-binding site mimetics: an experimental study combining fluorescence, 13C NMR spectroscopy and ESI mass spectrometry.
    Yang CM; Li X; Wei W; Li Y; Duan Z; Zheng J; Huang T
    Chemistry; 2007; 13(11):3120-30. PubMed ID: 17201001
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Study on the interaction of copper-zinc superoxide dismutase with cobalt (II)-histidine by spectral analysis. II. Effects of pH, interaction time].
    Zheng X; Hu J; Cheng G; Xu Y; Zhao Y; Liu M
    Guang Pu Xue Yu Guang Pu Fen Xi; 1999 Dec; 19(6):803-5. PubMed ID: 15822302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.