These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 25410805)
1. Biphasic fermentation is an efficient strategy for the overproduction of δ-endotoxin from Bacillus thuringiensis. Jisha VN; Smitha RB; Priji P; Sajith S; Benjamin S Appl Biochem Biotechnol; 2015 Feb; 175(3):1519-35. PubMed ID: 25410805 [TBL] [Abstract][Full Text] [Related]
2. Potato flour mediated solid-state fermentation for the enhanced production of Bacillus thuringiensis-toxin. Smitha RB; Jisha VN; Pradeep S; Josh MS; Benjamin S J Biosci Bioeng; 2013 Nov; 116(5):595-601. PubMed ID: 23773700 [TBL] [Abstract][Full Text] [Related]
3. Relationship between poly-beta-hydroxybutyrate production and delta-endotoxin for Bacillus thuringiensis var. kurstaki. Navarro AK; Farrera RR; López R; Pérez-Guevara F Biotechnol Lett; 2006 May; 28(9):641-4. PubMed ID: 16642302 [TBL] [Abstract][Full Text] [Related]
4. Mathematical relationships between spore concentrations, delta-endotoxin levels, and entomotoxicity of Bacillus thuringiensis preparations produced in different fermentation media. Vu KD; Tyagi RD; Surampalli RY; Valéro JR Bioresour Technol; 2012 Nov; 123():303-11. PubMed ID: 22940334 [TBL] [Abstract][Full Text] [Related]
5. Experimental design and Bayesian networks for enhancement of delta-endotoxin production by Bacillus thuringiensis. Ennouri K; Ayed RB; Hassen HB; Mazzarello M; Ottaviani E Acta Microbiol Immunol Hung; 2015 Dec; 62(4):379-92. PubMed ID: 26689874 [TBL] [Abstract][Full Text] [Related]
6. Optimization of bioinsecticides overproduction by Bacillus thuringiensis subsp. kurstaki using linear regression. Ennourri K; Hassen HB; Zouari N Pol J Microbiol; 2013; 62(3):287-93. PubMed ID: 24459834 [TBL] [Abstract][Full Text] [Related]
7. Impact of different pH control agents on biopesticidal activity of Bacillus thuringiensis during the fermentation of starch industry wastewater. Vu KD; Tyagi RD; Valéro JR; Surampalli RY Bioprocess Biosyst Eng; 2009 Jun; 32(4):511-9. PubMed ID: 18979122 [TBL] [Abstract][Full Text] [Related]
8. Oxygen supply in Bacillus thuringiensis fermentations: bringing new insights on their impact on sporulation and δ-endotoxin production. Boniolo FS; Rodrigues RC; Prata AM; López ML; Jacinto T; da Silveira MM; Berbert-Molina MA Appl Microbiol Biotechnol; 2012 May; 94(3):625-36. PubMed ID: 22395904 [TBL] [Abstract][Full Text] [Related]
9. Protein phosphorylation in Bacillus thuringiensis during growth and delta-endotoxin production. Watson GM; Mann NH J Gen Microbiol; 1988 Sep; 134(9):2559-65. PubMed ID: 2855529 [TBL] [Abstract][Full Text] [Related]
10. The effect of aeration conditions, characterized by the volumetric mass transfer coefficient K(L)a, on the fermentation kinetics of Bacillus thuringiensis kurstaki. Mounsef JR; Salameh D; Louka N; Brandam C; Lteif R J Biotechnol; 2015 Sep; 210():100-6. PubMed ID: 26091772 [TBL] [Abstract][Full Text] [Related]
11. Effects of media composition of delta-endotoxin production and morphology of Bacillus thuringiensis in wild types and spontaneously mutated strains. Perani M; Bishop AH Microbios; 2000; 101(398):47-66. PubMed ID: 10677843 [TBL] [Abstract][Full Text] [Related]
12. Production of multiple delta-endotoxins by Bacillus thuringiensis: delta-endotoxins produced by strains of the subspecies galleriae and wuhanensis. Chestukhina GG; Kostina LI; Zalunin IA; Revina LP; Mikhailova AL; Stepanov VM Can J Microbiol; 1994 Dec; 40(12):1026-34. PubMed ID: 7704829 [TBL] [Abstract][Full Text] [Related]
13. Improvement of Bacillus thuringiensis bioinsecticide production by sporeless and sporulating strains using response surface methodology. Ben Khedher S; Kamoun A; Jaoua S; Zouari N N Biotechnol; 2011 Oct; 28(6):705-12. PubMed ID: 21310269 [TBL] [Abstract][Full Text] [Related]
14. Fed-batch fermentation studies with Bacillus thuringiensis H-14 synthesising endotoxin. Kuppusamy M; Balaraman K Indian J Exp Biol; 1991 Nov; 29(11):1031-4. PubMed ID: 1667779 [TBL] [Abstract][Full Text] [Related]
15. The residual occurrences of Bacillus thuringiensis biopesticides in food and beverages. Zhou G; Yan J; Dasheng Z; Zhou X; Yuan Z Int J Food Microbiol; 2008 Sep; 127(1-2):68-72. PubMed ID: 18620771 [TBL] [Abstract][Full Text] [Related]
16. Overproduction of delta-endotoxins by sporeless Bacillus thuringiensis mutants obtained by nitrous acid mutagenesis. Ben Khedher S; Zouari N; Messaddeq N; Schultz P; Jaoua S Curr Microbiol; 2011 Jan; 62(1):38-43. PubMed ID: 20490495 [TBL] [Abstract][Full Text] [Related]
17. Cost-effective production of Bacillus thuringiensis biopesticides by solid-state fermentation using wastewater sludge: effects of heavy metals. Zhuang L; Zhou S; Wang Y; Liu Z; Xu R Bioresour Technol; 2011 Apr; 102(7):4820-6. PubMed ID: 21295967 [TBL] [Abstract][Full Text] [Related]
18. [Bioconversion of sewage sludge to biopesticide by Bacillus thuringiensis]. Chang M; Zhou SG; Lu N; Ni JR Huan Jing Ke Xue; 2006 Jul; 27(7):1450-4. PubMed ID: 16881328 [TBL] [Abstract][Full Text] [Related]
20. Restoration of the crystallization of altered delta-endotoxins Cry1Ac, by the promotion of their in vivo integration into the Bacillus thuringiensis native crystals. Dammak M; Tounsi S; Hamadou DB; Abdelkafi L; Schultz P; Jaoua S FEMS Microbiol Lett; 2009 Mar; 292(2):268-73. PubMed ID: 19220475 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]