These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25410814)

  • 1. Impact of lattice distortion and electron doping on α-MoO3 electronic structure.
    Huang PR; He Y; Cao C; Lu ZH
    Sci Rep; 2014 Nov; 4():7131. PubMed ID: 25410814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation Study of Surface Transfer Doping of Hydrogenated Diamond by MoO
    McGhee J; Georgiev VP
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32326123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Harvesting, storing and utilising solar energy using MoO3 : modulating structural distortion through pH adjustment.
    Lou SN; Ng YH; Ng C; Scott J; Amal R
    ChemSusChem; 2014 Jul; 7(7):1934-41. PubMed ID: 24811956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoupling the Lattice Distortion and Charge Doping Effects on the Phase Transition Behavior of VO2 by Titanium (Ti(4+)) Doping.
    Wu Y; Fan L; Liu Q; Chen S; Huang W; Chen F; Liao G; Zou C; Wu Z
    Sci Rep; 2015 May; 5():9328. PubMed ID: 25950809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling Strong Ion-Electron-Lattice Coupling and Electronic Antidoping in Hydrogenated Perovskite Nickelate.
    Gao L; Wang H; Meng F; Peng H; Lyu X; Zhu M; Wang Y; Lu C; Liu J; Lin T; Ji A; Zhang Q; Gu L; Yu P; Meng S; Cao Z; Lu N
    Adv Mater; 2023 Jun; 35(26):e2300617. PubMed ID: 36938704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic properties of reduced molybdenum oxides.
    Inzani K; Nematollahi M; Vullum-Bruer F; Grande T; Reenaas TW; Selbach SM
    Phys Chem Chem Phys; 2017 Mar; 19(13):9232-9245. PubMed ID: 28321441
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the SrTiO3-MoO3 Interface Electronic Structure: An in Situ Photoelectron Spectroscopy Study.
    Du Y; Peng HY; Mao H; Jin KX; Wang H; Li F; Gao XY; Chen W; Wu T
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11309-14. PubMed ID: 25964994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface Charge Transfer Doping via Transition Metal Oxides for Efficient p-Type Doping of II-VI Nanostructures.
    Xia F; Shao Z; He Y; Wang R; Wu X; Jiang T; Duhm S; Zhao J; Lee ST; Jie J
    ACS Nano; 2016 Nov; 10(11):10283-10293. PubMed ID: 27798826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optoelectronic Properties of α-MoO
    Huang X; Xu X; Huang J; Zhang Z; Gao Y; Lu Z; Wu Z; Luo T; Cai Y; Qu Y; Liu P; Hu C; Shi T; Xie W
    Materials (Basel); 2022 May; 15(9):. PubMed ID: 35591711
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CdO as the archetypical transparent conducting oxide. Systematics of dopant ionic radius and electronic structure effects on charge transport and band structure.
    Yang Y; Jin S; Medvedeva JE; Ireland JR; Metz AW; Ni J; Hersam MC; Freeman AJ; Marks TJ
    J Am Chem Soc; 2005 Jun; 127(24):8796-804. PubMed ID: 15954786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is Charge-Transfer Doping Possible at the Interfaces of Monolayer VSe
    Zhang L; He X; Xing K; Zhang W; Tadich A; Wong PKJ; Qi DC; Wee ATS
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43789-43795. PubMed ID: 31657202
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Transfer Doping of Cubic Boron Nitride Films by MoO3 and Tetrafluoro-tetracyanoquinodimethane (F4-TCNQ).
    He B; Ng TW; Lo MF; Lee CS; Zhang W
    ACS Appl Mater Interfaces; 2015 May; 7(18):9851-7. PubMed ID: 25915092
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Correlation induced insulator to metal transition: a systematic density functional study on highly doped n-type trans-polyacetylene.
    Sen S; Chakrabarti S
    J Chem Phys; 2006 Jan; 124(3):034702. PubMed ID: 16438595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic properties of doped and defective semiconducting oxides from hybrid density functional calculations.
    Di Valentin C; Pacchioni G
    Acc Chem Res; 2014 Nov; 47(11):3233-41. PubMed ID: 24828320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure of epitaxial single-layer MoS2.
    Miwa JA; Ulstrup S; Sørensen SG; Dendzik M; Čabo AG; Bianchi M; Lauritsen JV; Hofmann P
    Phys Rev Lett; 2015 Jan; 114(4):046802. PubMed ID: 25679902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semiconducting transition metal oxides.
    Lany S
    J Phys Condens Matter; 2015 Jul; 27(28):283203. PubMed ID: 26126022
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dopant ion size and electronic structure effects on transparent conducting oxides. Sc-doped CdO thin films grown by MOCVD.
    Jin S; Yang Y; Medvedeva JE; Ireland JR; Metz AW; Ni J; Kannewurf CR; Freeman AJ; Marks TJ
    J Am Chem Soc; 2004 Oct; 126(42):13787-93. PubMed ID: 15493938
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Massive band gap variation in layered oxides through cation ordering.
    Balachandran PV; Rondinelli JM
    Nat Commun; 2015 Jan; 6():6191. PubMed ID: 25635516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface doping and band gap tunability in hydrogenated graphene.
    Matis BR; Burgess JS; Bulat FA; Friedman AL; Houston BH; Baldwin JW
    ACS Nano; 2012 Jan; 6(1):17-22. PubMed ID: 22187951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of double perovskite A2FeReO6 (A = Ba and Ca): interplay between spin-orbit interaction, electron correlation, and lattice distortion.
    Jeon BC; Kim CH; Moon SJ; Choi WS; Jeong H; Lee YS; Yu J; Won CJ; Jung JH; Hur N; Noh TW
    J Phys Condens Matter; 2010 Sep; 22(34):345602. PubMed ID: 21403258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.