These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25411326)

  • 1. Bayesian inference for joint modelling of longitudinal continuous, binary and ordinal events.
    Li Q; Pan J; Belcher J
    Stat Methods Med Res; 2016 Dec; 25(6):2521-2540. PubMed ID: 25411326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Longitudinal Joint Modelling of Ordinal and Overdispersed Count Outcomes: A Bridge Distribution for the Ordinal Random Intercept.
    Amini P; Moghimbeigi A; Zayeri F; Tapak L; Maroufizadeh S; Verbeke G
    Comput Math Methods Med; 2021; 2021():5521881. PubMed ID: 33763151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bayesian hierarchical joint modeling of repeatedly measured continuous and ordinal markers of disease severity: Application to Ugandan diabetes data.
    Buhule OD; Wahed AS; Youk AO
    Stat Med; 2017 Dec; 36(29):4677-4691. PubMed ID: 28833382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Longitudinal measurement in health-related surveys. A Bayesian joint growth model for multivariate ordinal responses.
    Verhagen J; Fox JP
    Stat Med; 2013 Jul; 32(17):2988-3005. PubMed ID: 23212734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of multivariate mixed longitudinal data: a flexible latent process approach.
    Proust-Lima C; Amieva H; Jacqmin-Gadda H
    Br J Math Stat Psychol; 2013 Nov; 66(3):470-87. PubMed ID: 23082854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Logistic random effects regression models: a comparison of statistical packages for binary and ordinal outcomes.
    Li B; Lingsma HF; Steyerberg EW; Lesaffre E
    BMC Med Res Methodol; 2011 May; 11():77. PubMed ID: 21605357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A marginalized conditional linear model for longitudinal binary data when informative dropout occurs in continuous time.
    Su L
    Biostatistics; 2012 Apr; 13(2):355-68. PubMed ID: 22133756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Correlated probit analysis of repeatedly measured ordinal and continuous outcomes with application to the Health and Retirement Study.
    Grigorova D; Gueorguieva R
    Stat Med; 2016 Oct; 35(23):4202-25. PubMed ID: 27222058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferences for joint modelling of repeated ordinal scores and time to event data.
    Chakraborty A; Das K
    Comput Math Methods Med; 2010 Sep; 11(3):281-95. PubMed ID: 20721765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian informative dropout model for longitudinal binary data with random effects using conditional and joint modeling approaches.
    Chan JS
    Biom J; 2016 May; 58(3):549-69. PubMed ID: 26467236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Exploratory Diagnostic Model for Ordinal Responses with Binary Attributes: Identifiability and Estimation.
    Culpepper SA
    Psychometrika; 2019 Dec; 84(4):921-940. PubMed ID: 31432312
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials.
    Liu F; Li Q
    Stat Methods Med Res; 2016 Oct; 25(5):2180-2192. PubMed ID: 24448442
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Robust Bayesian hierarchical model using normal/independent distributions.
    Chen G; Luo S
    Biom J; 2016 Jul; 58(4):831-51. PubMed ID: 26711558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint analysis of repeatedly observed continuous and ordinal measures of disease severity.
    Gueorguieva RV; Sanacora G
    Stat Med; 2006 Apr; 25(8):1307-22. PubMed ID: 16217846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Meta-analysis of the Italian studies on short-term effects of air pollution].
    Biggeri A; Bellini P; Terracini B;
    Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Parametric and nonparametric population methods: their comparative performance in analysing a clinical dataset and two Monte Carlo simulation studies.
    Bustad A; Terziivanov D; Leary R; Port R; Schumitzky A; Jelliffe R
    Clin Pharmacokinet; 2006; 45(4):365-83. PubMed ID: 16584284
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An imputation strategy for incomplete longitudinal ordinal data.
    Demirtas H; Hedeker D
    Stat Med; 2008 Sep; 27(20):4086-93. PubMed ID: 18338313
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genomic-Enabled Prediction of Ordinal Data with Bayesian Logistic Ordinal Regression.
    Montesinos-López OA; Montesinos-López A; Crossa J; Burgueño J; Eskridge K
    G3 (Bethesda); 2015 Aug; 5(10):2113-26. PubMed ID: 26290569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A joint overdispersed marginalized random-effects model for analyzing two or more longitudinal ordinal responses.
    Vahabi N; Kazemnejad A; Datta S
    Stat Methods Med Res; 2019 Jan; 28(1):50-69. PubMed ID: 28657455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of methods for imputing ordinal data using multivariate normal imputation: a case study of non-linear effects in a large cohort study.
    Lee KJ; Galati JC; Simpson JA; Carlin JB
    Stat Med; 2012 Dec; 31(30):4164-74. PubMed ID: 22826110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.