These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 25411411)

  • 1. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A scaling analysis of measles epidemics in a small population.
    Rhodes CJ; Anderson RM
    Philos Trans R Soc Lond B Biol Sci; 1996 Dec; 351(1348):1679-88. PubMed ID: 9004320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreasing stochasticity through enhanced seasonality in measles epidemics.
    Mantilla-Beniers NB; Bjørnstad ON; Grenfell BT; Rohani P
    J R Soc Interface; 2010 May; 7(46):727-39. PubMed ID: 19828508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stochastic epidemics: the expected duration of the endemic period in higher dimensional models.
    Grasman J
    Math Biosci; 1998 Aug; 152(1):13-27. PubMed ID: 9727295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial heterogeneity, nonlinear dynamics and chaos in infectious diseases.
    Grenfell BT; Kleczkowski A; Gilligan CA; Bolker BM
    Stat Methods Med Res; 1995 Jun; 4(2):160-83. PubMed ID: 7582203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Opposite patterns of synchrony in sympatric disease metapopulations.
    Rohani P; Earn DJ; Grenfell BT
    Science; 1999 Oct; 286(5441):968-71. PubMed ID: 10542154
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measles metapopulation dynamics: a gravity model for epidemiological coupling and dynamics.
    Xia Y; Bjørnstad ON; Grenfell BT
    Am Nat; 2004 Aug; 164(2):267-81. PubMed ID: 15278849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empirical determinants of measles metapopulation dynamics in England and Wales.
    Finkenstädt B; Grenfell B
    Proc Biol Sci; 1998 Feb; 265(1392):211-20. PubMed ID: 9493407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of human mobility on the periodicities and mechanisms underlying measles dynamics.
    Marguta R; Parisi A
    J R Soc Interface; 2015 Mar; 12(104):20141317. PubMed ID: 25673302
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns.
    Dalziel BD; Bjørnstad ON; van Panhuis WG; Burke DS; Metcalf CJ; Grenfell BT
    PLoS Comput Biol; 2016 Feb; 12(2):e1004655. PubMed ID: 26845437
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measles hotspots and epidemiological connectivity.
    Bharti N; Djibo A; Ferrari MJ; Grais RF; Tatem AJ; McCabe CA; Bjornstad ON; Grenfell BT
    Epidemiol Infect; 2010 Sep; 138(9):1308-16. PubMed ID: 20096146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing and linking machine learning and semi-mechanistic models for the predictability of endemic measles dynamics.
    Lau MSY; Becker A; Madden W; Waller LA; Metcalf CJE; Grenfell BT
    PLoS Comput Biol; 2022 Sep; 18(9):e1010251. PubMed ID: 36074763
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transients and attractors in epidemics.
    Bauch CT; Earn DJ
    Proc Biol Sci; 2003 Aug; 270(1524):1573-8. PubMed ID: 12908977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power laws governing epidemics in isolated populations.
    Rhodes CJ; Anderson RM
    Nature; 1996 Jun; 381(6583):600-2. PubMed ID: 8637594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A demographic model of measles epidemics.
    Duncan SR; Scott S; Duncan CJ
    Eur J Popul; 1999 Jun; 15(2):185-98. PubMed ID: 12159005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stochastic model for early identification of infectious disease epidemics with application to measles cases in Bangladesh.
    Sharmin S; Rayhan MI
    Asia Pac J Public Health; 2015 Mar; 27(2):NP816-23. PubMed ID: 23165490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A stochastic model for extinction and recurrence of epidemics: estimation and inference for measles outbreaks.
    Finkenstädt BF; Bjørnstad ON; Grenfell BT
    Biostatistics; 2002 Dec; 3(4):493-510. PubMed ID: 12933594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A discrete-time communicable disease model with a stochastic contact rate for nonhomogeneous populations.
    Enderle JD
    Biomed Sci Instrum; 1991; 27():77-88. PubMed ID: 2065180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.