BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25411465)

  • 1. Cell-type-specific resonances shape the responses of striatal neurons to synaptic input.
    Beatty JA; Song SC; Wilson CJ
    J Neurophysiol; 2015 Feb; 113(3):688-700. PubMed ID: 25411465
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband Entrainment of Striatal Low-Threshold Spike Interneurons.
    Morales JC; Higgs MH; Song SC; Wilson CJ
    Front Neural Circuits; 2020; 14():36. PubMed ID: 32655378
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency-dependent entrainment of striatal fast-spiking interneurons.
    Higgs MH; Wilson CJ
    J Neurophysiol; 2019 Sep; 122(3):1060-1072. PubMed ID: 31314645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of low-gamma oscillations in a GABAergic network model of the striatum.
    Wu Z; Guo A; Fu X
    Neural Netw; 2017 Nov; 95():72-90. PubMed ID: 28910740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Excitatory extrinsic afferents to striatal interneurons and interactions with striatal microcircuitry.
    Assous M; Tepper JM
    Eur J Neurosci; 2019 Mar; 49(5):593-603. PubMed ID: 29480942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal cholinergic interneurons generate beta and gamma oscillations in the corticostriatal circuit and produce motor deficits.
    Kondabolu K; Roberts EA; Bucklin M; McCarthy MM; Kopell N; Han X
    Proc Natl Acad Sci U S A; 2016 May; 113(22):E3159-68. PubMed ID: 27185924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum.
    Wilson CJ; Chang HT; Kitai ST
    J Neurosci; 1990 Feb; 10(2):508-19. PubMed ID: 2303856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.
    Johansson Y; Silberberg G
    Cell Rep; 2020 Jan; 30(4):1178-1194.e3. PubMed ID: 31995757
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of the body in the lateral striatum of the freely moving rat: Fast Spiking Interneurons respond to stimulation of individual body parts.
    Kulik JM; Pawlak AP; Kalkat M; Coffey KR; West MO
    Brain Res; 2017 Feb; 1657():101-108. PubMed ID: 27914882
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons.
    Faust TW; Assous M; Shah F; Tepper JM; Koós T
    Eur J Neurosci; 2015 Jul; 42(2):1764-74. PubMed ID: 25865337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative estimate of synaptic inputs to striatal neurons during up and down states in vitro.
    Blackwell KT; Czubayko U; Plenz D
    J Neurosci; 2003 Oct; 23(27):9123-32. PubMed ID: 14534246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pauses in cholinergic interneuron firing exert an inhibitory control on striatal output in vivo.
    Zucca S; Zucca A; Nakano T; Aoki S; Wickens J
    Elife; 2018 Mar; 7():. PubMed ID: 29578407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spike-timing dependent plasticity in striatal interneurons.
    Fino E; Venance L
    Neuropharmacology; 2011 Apr; 60(5):780-8. PubMed ID: 21262240
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum.
    Damodaran S; Evans RC; Blackwell KT
    J Neurophysiol; 2014 Feb; 111(4):836-48. PubMed ID: 24304860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Desynchronization of fast-spiking interneurons reduces β-band oscillations and imbalance in firing in the dopamine-depleted striatum.
    Damodaran S; Cressman JR; Jedrzejewski-Szmek Z; Blackwell KT
    J Neurosci; 2015 Jan; 35(3):1149-59. PubMed ID: 25609629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marked differences in the number and type of synapses innervating the somata and primary dendrites of midbrain dopaminergic neurons, striatal cholinergic interneurons, and striatal spiny projection neurons in the rat.
    Sizemore RJ; Zhang R; Lin N; Goddard L; Wastney T; Parr-Brownlie LC; Reynolds JN; Oorschot DE
    J Comp Neurol; 2016 Apr; 524(5):1062-80. PubMed ID: 26355230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical control of striatal fast-spiking interneuron synchrony.
    McKeon PN; Bunce GW; Patton MH; Chen R; Mathur BN
    J Physiol; 2022 May; 600(9):2189-2202. PubMed ID: 35332539
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic stimulation reveals distinct modulatory properties of thalamostriatal vs corticostriatal glutamatergic inputs to fast-spiking interneurons.
    Sciamanna G; Ponterio G; Mandolesi G; Bonsi P; Pisani A
    Sci Rep; 2015 Nov; 5():16742. PubMed ID: 26572101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Striatal cholinergic neurotransmission requires VGLUT3.
    Nelson AB; Bussert TG; Kreitzer AC; Seal RP
    J Neurosci; 2014 Jun; 34(26):8772-7. PubMed ID: 24966377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.