These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 25411884)

  • 1. Structure of a designed protein cage that self-assembles into a highly porous cube.
    Lai YT; Reading E; Hura GL; Tsai KL; Laganowsky A; Asturias FJ; Tainer JA; Robinson CV; Yeates TO
    Nat Chem; 2014 Dec; 6(12):1065-71. PubMed ID: 25411884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a 16-nm cage designed by using protein oligomers.
    Lai YT; Cascio D; Yeates TO
    Science; 2012 Jun; 336(6085):1129. PubMed ID: 22654051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanohedra: using symmetry to design self assembling protein cages, layers, crystals, and filaments.
    Padilla JE; Colovos C; Yeates TO
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2217-21. PubMed ID: 11226219
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ordering of lipid A-monophosphate clusters in aqueous solutions.
    Faunce CA; Reichelt H; Quitschau P; Paradies HH
    J Chem Phys; 2007 Sep; 127(11):115103. PubMed ID: 17887884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical and helical self-assembly of ADP-ribosyl cyclase into large-scale protein microtubes.
    Liu Q; Kriksunov IA; Wang Z; Graeff R; Lee HC; Hao Q
    J Phys Chem B; 2008 Nov; 112(47):14682-6. PubMed ID: 18956900
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational de novo design of a self-assembling peptide with predefined structure.
    Kaltofen S; Li C; Huang PS; Serpell LC; Barth A; André I
    J Mol Biol; 2015 Jan; 427(2):550-62. PubMed ID: 25498388
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversification of Protein Cage Structure Using Circularly Permuted Subunits.
    Azuma Y; Herger M; Hilvert D
    J Am Chem Soc; 2018 Jan; 140(2):558-561. PubMed ID: 29257675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of ordered protein assemblies using rigid three-body fusion.
    Vulovic I; Yao Q; Park YJ; Courbet A; Norris A; Busch F; Sahasrabuddhe A; Merten H; Sahtoe DD; Ueda G; Fallas JA; Weaver SJ; Hsia Y; Langan RA; Plückthun A; Wysocki VH; Veesler D; Jensen GJ; Baker D
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational design of self-assembling protein nanomaterials with atomic level accuracy.
    King NP; Sheffler W; Sawaya MR; Vollmar BS; Sumida JP; André I; Gonen T; Yeates TO; Baker D
    Science; 2012 Jun; 336(6085):1171-4. PubMed ID: 22654060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of porous protein crystals in development of biohybrid materials.
    Koshiyama T; Kawaba N; Hikage T; Shirai M; Miura Y; Huang CY; Tanaka K; Watanabe Y; Ueno T
    Bioconjug Chem; 2010 Feb; 21(2):264-9. PubMed ID: 20099839
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Porous organic cage crystals: characterising the porous crystal surface.
    Bojdys MJ; Hasell T; Severin N; Jelfs KE; Rabe JP; Cooper AI
    Chem Commun (Camb); 2012 Dec; 48(98):11948-50. PubMed ID: 23125980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and flexibility of nanoscale protein cages designed by symmetric self-assembly.
    Lai YT; Tsai KL; Sawaya MR; Asturias FJ; Yeates TO
    J Am Chem Soc; 2013 May; 135(20):7738-43. PubMed ID: 23621606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallizing protein assemblies via free and grafted linkers.
    Dahal YR; Olvera de la Cruz M
    Soft Matter; 2019 May; 15(21):4311-4319. PubMed ID: 31070663
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembled cage-like protein structures.
    Putri RM; Cornelissen JJ; Koay MS
    Chemphyschem; 2015 Apr; 16(5):911-8. PubMed ID: 25640591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and structure of two new protein cages illustrate successes and ongoing challenges in protein engineering.
    Cannon KA; Park RU; Boyken SE; Nattermann U; Yi S; Baker D; King NP; Yeates TO
    Protein Sci; 2020 Apr; 29(4):919-929. PubMed ID: 31840320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective Elimination of the Key Subunit Interfaces Facilitates Conversion of Native 24-mer Protein Nanocage into 8-mer Nanorings.
    Wang W; Wang L; Chen H; Zang J; Zhao X; Zhao G; Wang H
    J Am Chem Soc; 2018 Oct; 140(43):14078-14081. PubMed ID: 30336004
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An ultra-stable gold-coordinated protein cage displaying reversible assembly.
    Malay AD; Miyazaki N; Biela A; Chakraborti S; Majsterkiewicz K; Stupka I; Kaplan CS; Kowalczyk A; Piette BMAG; Hochberg GKA; Wu D; Wrobel TP; Fineberg A; Kushwah MS; Kelemen M; Vavpetič P; Pelicon P; Kukura P; Benesch JLP; Iwasaki K; Heddle JG
    Nature; 2019 May; 569(7756):438-442. PubMed ID: 31068697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems.
    Wasielewski MR
    Acc Chem Res; 2009 Dec; 42(12):1910-21. PubMed ID: 19803479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials.
    Yeates TO
    Annu Rev Biophys; 2017 May; 46():23-42. PubMed ID: 28301774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogenesis of the secretory granule: chromogranin A coiled-coil structure results in unusual physical properties and suggests a mechanism for granule core condensation.
    Mosley CA; Taupenot L; Biswas N; Taulane JP; Olson NH; Vaingankar SM; Wen G; Schork NJ; Ziegler MG; Mahata SK; O'Connor DT
    Biochemistry; 2007 Sep; 46(38):10999-1012. PubMed ID: 17718510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.