These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25411885)

  • 1. Revealing the macromolecular targets of complex natural products.
    Reker D; Perna AM; Rodrigues T; Schneider P; Reutlinger M; Mönch B; Koeberle A; Lamers C; Gabler M; Steinmetz H; Müller R; Schubert-Zsilavecz M; Werz O; Schneider G
    Nat Chem; 2014 Dec; 6(12):1072-8. PubMed ID: 25411885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stereochemical determination of Archazolid A and B, highly potent vacuolar-type ATPase inhibitors from the Myxobacterium Archangium gephyra.
    Hassfeld J; Farès C; Steinmetz H; Carlomagno T; Menche D
    Org Lett; 2006 Oct; 8(21):4751-4. PubMed ID: 17020294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Archazolid A-15-O-β-D-glucopyranoside and iso-archazolid B: potent V-ATPase inhibitory polyketides from the myxobacteria Cystobacter violaceus and Archangium gephyra.
    Horstmann N; Essig S; Bockelmann S; Wieczorek H; Huss M; Sasse F; Menche D
    J Nat Prod; 2011 May; 74(5):1100-5. PubMed ID: 21513292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Macromolecular Targets of Fragment-Like Natural Products.
    Rodrigues T; Reker D; Kunze J; Schneider P; Schneider G
    Angew Chem Int Ed Engl; 2015 Sep; 54(36):10516-20. PubMed ID: 26202212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting on natural products for drug design.
    Rodrigues T; Reker D; Schneider P; Schneider G
    Nat Chem; 2016 Jun; 8(6):531-41. PubMed ID: 27219696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and biological evaluation of a water-soluble derivative of the potent V-ATPase inhibitor archazolid.
    Persch E; Basile T; Bockelmann S; Huss M; Wieczorek H; Carlomagno T; Menche D
    Bioorg Med Chem Lett; 2012 Dec; 22(24):7735-8. PubMed ID: 23122818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macromolecular target prediction by self-organizing feature maps.
    Schneider G; Schneider P
    Expert Opin Drug Discov; 2017 Mar; 12(3):271-277. PubMed ID: 27997811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EPR Studies of V-ATPase with Spin-Labeled Inhibitors DCC and Archazolid: Interaction Dynamics with Proton Translocating Subunit c.
    Gölz JP; Bockelmann S; Mayer K; Steinhoff HJ; Wieczorek H; Huss M; Klare JP; Menche D
    ChemMedChem; 2016 Feb; 11(4):420-8. PubMed ID: 26662886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total Synthesis of Archazolid F.
    Scheeff S; Menche D
    Org Lett; 2019 Jan; 21(1):271-274. PubMed ID: 30548075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Novel Potent Archazolids: Pharmacology of an Emerging Class of Anticancer Drugs.
    Scheeff S; Rivière S; Ruiz J; Abdelrahman A; Schulz-Fincke AC; Köse M; Tiburcy F; Wieczorek H; Gütschow M; Müller CE; Menche D
    J Med Chem; 2020 Feb; 63(4):1684-1698. PubMed ID: 31990540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Archazolid and apicularen: novel specific V-ATPase inhibitors.
    Huss M; Sasse F; Kunze B; Jansen R; Steinmetz H; Ingenhorst G; Zeeck A; Wieczorek H
    BMC Biochem; 2005 Aug; 6():13. PubMed ID: 16080788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis, and biological evaluation of novel analogues of archazolid: a highly potent simplified V-ATPase inhibitor.
    Menche D; Hassfeld J; Sasse F; Huss M; Wieczorek H
    Bioorg Med Chem Lett; 2007 Mar; 17(6):1732-5. PubMed ID: 17239591
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning estimates of natural product conformational energies.
    Rupp M; Bauer MR; Wilcken R; Lange A; Reutlinger M; Boeckler FM; Schneider G
    PLoS Comput Biol; 2014 Jan; 10(1):e1003400. PubMed ID: 24453952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modular total synthesis of archazolid A and B.
    Menche D; Hassfeld J; Li J; Mayer K; Rudolph S
    J Org Chem; 2009 Oct; 74(19):7220-9. PubMed ID: 19739663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A screening pattern recognition method finds new and divergent targets for drugs and natural products.
    Wassermann AM; Lounkine E; Urban L; Whitebread S; Chen S; Hughes K; Guo H; Kutlina E; Fekete A; Klumpp M; Glick M
    ACS Chem Biol; 2014 Jul; 9(7):1622-31. PubMed ID: 24802392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Method for Unveiling the Target Promiscuity of Pharmacologically Active Compounds.
    Schneider P; Schneider G
    Angew Chem Int Ed Engl; 2017 Sep; 56(38):11520-11524. PubMed ID: 28704574
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-targeted natural products evaluation based on biological activity prediction with PASS.
    Lagunin A; Filimonov D; Poroikov V
    Curr Pharm Des; 2010 May; 16(15):1703-17. PubMed ID: 20222853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De-orphaning the marine natural product (±)-marinopyrrole A by computational target prediction and biochemical validation.
    Schneider P; Schneider G
    Chem Commun (Camb); 2017 Feb; 53(14):2272-2274. PubMed ID: 28154844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying the macromolecular targets of de novo-designed chemical entities through self-organizing map consensus.
    Reker D; Rodrigues T; Schneider P; Schneider G
    Proc Natl Acad Sci U S A; 2014 Mar; 111(11):4067-72. PubMed ID: 24591595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Industrial natural product chemistry for drug discovery and development.
    Bauer A; Brönstrup M
    Nat Prod Rep; 2014 Jan; 31(1):35-60. PubMed ID: 24142193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.