These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 25412036)

  • 1. Pt-free solar driven photoelectrochemical hydrogen fuel generation using 1T MoS2 co-catalyst assembled CdS QDs/TiO2 photoelectrode.
    Raja R; Sudhagar P; Devadoss A; Terashima C; Shrestha LK; Nakata K; Jayavel R; Ariga K; Fujishima A
    Chem Commun (Camb); 2015 Jan; 51(3):522-5. PubMed ID: 25412036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient quantum dot-sensitized TiO2 solar cells based on multilayered semiconductors (ZnSe/CdS/CdSe).
    Yang L; McCue C; Zhang Q; Uchaker E; Mai Y; Cao G
    Nanoscale; 2015 Feb; 7(7):3173-80. PubMed ID: 25615827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods.
    Wu K; Zhu H; Lian T
    Acc Chem Res; 2015 Mar; 48(3):851-9. PubMed ID: 25682713
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient photoelectrochemical hydrogen generation using heterostructures of Si and chemically exfoliated metallic MoS2.
    Ding Q; Meng F; English CR; Cabán-Acevedo M; Shearer MJ; Liang D; Daniel AS; Hamers RJ; Jin S
    J Am Chem Soc; 2014 Jun; 136(24):8504-7. PubMed ID: 24892384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation.
    Cheng C; Karuturi SK; Liu L; Liu J; Li H; Su LT; Tok AI; Fan HJ
    Small; 2012 Jan; 8(1):37-42. PubMed ID: 22009604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stable core/shell CdTe/Mn-CdS quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode and their photoelectrochemical properties.
    Li W; Sheng P; Feng H; Yin X; Zhu X; Yang X; Cai Q
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12353-62. PubMed ID: 25010851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rationally Designed CdS-Based Ternary Heterojunctions: A Case of 1T-MoS
    Chen W; Zhang S; Wang G; Huang G; Yu Z; Li Y; Tang L
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High performance photoelectrochemical hydrogen generation and solar cells with a double type II heterojunction.
    Lai LH; Gomulya W; Protesescu L; Kovalenko MV; Loi MA
    Phys Chem Chem Phys; 2014 Apr; 16(16):7531-7. PubMed ID: 24632882
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing Infrared Photons for Photoelectrochemical Hydrogen Generation. A PbS Quantum Dot Based "Quasi-Artificial Leaf".
    Trevisan R; Rodenas P; Gonzalez-Pedro V; Sima C; Sanchez RS; Barea EM; Mora-Sero I; Fabregat-Santiago F; Gimenez S
    J Phys Chem Lett; 2013 Jan; 4(1):141-6. PubMed ID: 26291226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Architecture design of TiO2 with Co-doped CdS quantum dots photoelectrode for water splitting.
    Tezcan F; Ahmad A; Kardaş G
    Turk J Chem; 2023; 47(5):1183-1194. PubMed ID: 38173763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step preparation and assembly of aqueous colloidal CdS(x)Se(1-x) nanocrystals within mesoporous TiO2 films for quantum dot-sensitized solar cells.
    Song X; Wang M; Deng J; Yang Z; Ran C; Zhang X; Yao X
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5139-48. PubMed ID: 23659502
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Awakening Solar Hydrogen Evolution of MoS
    Jia Y; Wang Z; Wang L; Ma Y; Wang G; Lin Y; Hu X; Zhang K
    ChemSusChem; 2019 Jul; 12(14):3336-3342. PubMed ID: 31087519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coverage control of CdSe quantum dots in the photodeposition on TiO2 for the photoelectrochemical solar hydrogen generation.
    Yoshii M; Murata Y; Nakabayashi Y; Ikeda T; Fujishima M; Tada H
    J Colloid Interface Sci; 2016 Jul; 474():34-40. PubMed ID: 27100903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The heat annealing effect on the performance of CdS/CdSe-sensitized TiO2 photoelectrodes in photochemical hydrogen generation.
    Chi CF; Liau SY; Lee YL
    Nanotechnology; 2010 Jan; 21(2):025202. PubMed ID: 19955606
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur Vacancy-Rich O-Doped 1T-MoS
    Sun B; Liang Z; Qian Y; Xu X; Han Y; Tian J
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7257-7269. PubMed ID: 31951373
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-Infrared Colloidal Quantum Dots for Efficient and Durable Photoelectrochemical Solar-Driven Hydrogen Production.
    Jin L; AlOtaibi B; Benetti D; Li S; Zhao H; Mi Z; Vomiero A; Rosei F
    Adv Sci (Weinh); 2016 Mar; 3(3):1500345. PubMed ID: 27668151
    [No Abstract]   [Full Text] [Related]  

  • 18. Photocatalytic H2 evolution on MoS2-TiO2 catalysts synthesized via mechanochemistry.
    Zhu Y; Ling Q; Liu Y; Wang H; Zhu Y
    Phys Chem Chem Phys; 2015 Jan; 17(2):933-40. PubMed ID: 25406580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembling metallic 1T-MoS
    Li XB; Gao YJ; Wu HL; Wang Y; Guo Q; Huang MY; Chen B; Tung CH; Wu LZ
    Chem Commun (Camb); 2017 May; 53(41):5606-5609. PubMed ID: 28429002
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable quantum dot photoelectrolysis cell for unassisted visible light solar water splitting.
    Yang HB; Miao J; Hung SF; Huo F; Chen HM; Liu B
    ACS Nano; 2014 Oct; 8(10):10403-13. PubMed ID: 25268880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.