These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25412196)
21. Preparation and microwave absorption performance of a flexible Fe Wang J; Jiao J; Sun G; Yuan K; Guan Z; Wei X RSC Adv; 2019 Nov; 9(65):37870-37881. PubMed ID: 35541814 [TBL] [Abstract][Full Text] [Related]
22. Nanocomposite microstructures with tunable mechanical and chemical properties. Tawfick S; Deng X; Hart AJ; Lahann J Phys Chem Chem Phys; 2010 May; 12(17):4446-51. PubMed ID: 20407718 [TBL] [Abstract][Full Text] [Related]
23. Diamond nanowires: fabrication, structure, properties, and applications. Yu Y; Wu L; Zhi J Angew Chem Int Ed Engl; 2014 Dec; 53(52):14326-51. PubMed ID: 25376154 [TBL] [Abstract][Full Text] [Related]
24. n-Type carbon nanotubes/silver telluride nanohybrid buckypaper with a high-thermoelectric figure of merit. Zhao W; Tan HT; Tan LP; Fan S; Hng HH; Boey YC; Beloborodov I; Yan Q ACS Appl Mater Interfaces; 2014 Apr; 6(7):4940-6. PubMed ID: 24645973 [TBL] [Abstract][Full Text] [Related]
25. Catalytically grown carbon nanotubes of small diameter have a high Young's modulus. Lukić B; Seo JW; Bacsa RR; Delpeux S; Béguin F; Bister G; Fonseca A; Nagy JB; Kis A; Jeney S; Kulik AJ; Forró L Nano Lett; 2005 Oct; 5(10):2074-7. PubMed ID: 16218740 [TBL] [Abstract][Full Text] [Related]
26. Nanocrystalline diamond--an excellent platform for life science applications. Kloss FR; Najam-Ul-Haq M; Rainer M; Gassner R; Lepperdinger G; Huck CW; Bonn G; Klauser F; Liu X; Memmel N; Bertel E; Garrido JA; Steinmüller-Nethl D J Nanosci Nanotechnol; 2007 Dec; 7(12):4581-7. PubMed ID: 18283848 [TBL] [Abstract][Full Text] [Related]
27. Origin of Conductive Nanocrystalline Diamond Nanoneedles for Optoelectronic Applications. Sankaran KJ; Yeh CJ; Hsieh PY; Pobedinskas P; Kunuku S; Leou KC; Tai NH; Lin IN; Haenen K ACS Appl Mater Interfaces; 2019 Jul; 11(28):25388-25398. PubMed ID: 31260239 [TBL] [Abstract][Full Text] [Related]
28. Role of nitrogen additive and temperature on growth of diamond films from nanocrystalline to polycrystalline. Chunjiu T; José G; Neves AJ; Hugo C; Fernandes AJ; Lianshe F; Sérgio P; Liping G; Gil C; Carmo MC J Nanosci Nanotechnol; 2010 Apr; 10(4):2722-30. PubMed ID: 20355491 [TBL] [Abstract][Full Text] [Related]
29. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. Steiner SA; Baumann TF; Bayer BC; Blume R; Worsley MA; MoberlyChan WJ; Shaw EL; Schlögl R; Hart AJ; Hofmann S; Wardle BL J Am Chem Soc; 2009 Sep; 131(34):12144-54. PubMed ID: 19663436 [TBL] [Abstract][Full Text] [Related]
30. Flexible high-conductivity carbon-nanotube interconnects made by rolling and printing. Tawfick S; O'Brien K; Hart AJ Small; 2009 Nov; 5(21):2467-73. PubMed ID: 19685444 [TBL] [Abstract][Full Text] [Related]
31. Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Wang D; Song P; Liu C; Wu W; Fan S Nanotechnology; 2008 Feb; 19(7):075609. PubMed ID: 21817646 [TBL] [Abstract][Full Text] [Related]
32. Crucial Role of Oxidation Debris of Carbon Nanotubes in Subsequent End-Use Applications of Carbon Nanotubes. Kim YS; Oh JY; Kim JH; Shin MH; Jeong YC; Sung SJ; Park J; Yang SJ; Park CR ACS Appl Mater Interfaces; 2017 May; 9(20):17552-17564. PubMed ID: 28460171 [TBL] [Abstract][Full Text] [Related]
33. Design and investigation of properties of nanocrystalline diamond optical planar waveguides. Prajzler V; Varga M; Nekvindova P; Remes Z; Kromka A Opt Express; 2013 Apr; 21(7):8417-25. PubMed ID: 23571931 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of the stability of electron field emission behavior and the related microplasma devices of carbon nanotubes by coating diamond films. Chang TH; Kunuku S; Hong YJ; Leou KC; Yew TR; Tai NH; Lin IN ACS Appl Mater Interfaces; 2014 Jul; 6(14):11589-97. PubMed ID: 24955653 [TBL] [Abstract][Full Text] [Related]
35. A novel procedure to obtain nanocrystalline diamond/porous silicon composite by chemical vapor deposition/infiltration processes. Miranda CR; Azevedo AF; Baldan MR; Beloto AF; Ferreira NG J Nanosci Nanotechnol; 2009 Jun; 9(6):3877-82. PubMed ID: 19504935 [TBL] [Abstract][Full Text] [Related]
36. Easy preparation of self-assembled high-density buckypaper with enhanced mechanical properties. Oh JY; Yang SJ; Park JY; Kim T; Lee K; Kim YS; Han HN; Park CR Nano Lett; 2015 Jan; 15(1):190-7. PubMed ID: 25495117 [TBL] [Abstract][Full Text] [Related]
38. Effect of Boron Doping on the Wear Behavior of the Growth and Nucleation Surfaces of Micro- and Nanocrystalline Diamond Films. Buijnsters JG; Tsigkourakos M; Hantschel T; Gomes FO; Nuytten T; Favia P; Bender H; Arstila K; Celis JP; Vandervorst W ACS Appl Mater Interfaces; 2016 Oct; 8(39):26381-26391. PubMed ID: 27595278 [TBL] [Abstract][Full Text] [Related]
39. Fast, Efficient Tailoring Growth of Nanocrystalline Diamond Films by Fine-Tuning of Gas-Phase Composition Using Microwave Plasma Chemical Vapor Deposition. Tang C; Fernandes AJS; Facao M; Carvalho AF; Chen W; Hou H; Costa FM Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930344 [TBL] [Abstract][Full Text] [Related]
40. Effects of the In Situ Growth of CNTs on Ti-Coated Diamond Surfaces on the Mechanical Properties of Diamond/Aluminum Composites. Wu H; Zhu P; Xia Y; Ma Y; Ding J; Gou H; Zhang Q; Yang S; Wu G Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607174 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]