These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 25412221)

  • 21. A competitive immunochromatographic strip assay for 17-α-hydroxy progesterone using colloidal gold nanoparticles.
    Tripathi V; Nara S; Singh K; Singh H; Shrivastav TG
    Clin Chim Acta; 2012 Jan; 413(1-2):262-8. PubMed ID: 22040782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A competitive colorimetric chloramphenicol assay based on the non-cross-linking deaggregation of gold nanoparticles coated with a polyadenine-modified aptamer.
    Xie Y; Huang Y; Tang D; Cui H; Cao H
    Mikrochim Acta; 2018 Nov; 185(12):534. PubMed ID: 30406418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual-readout fluorescence quenching immunochromatographic test strips for highly sensitive simultaneous detection of chloramphenicol and amantadine based on gold nanoparticle-triggered photoluminescent nanoswitch control.
    Xiong J; He S; Wang Z; Xu Y; Zhang L; Zhang H; Jiang H
    J Hazard Mater; 2022 May; 429():128316. PubMed ID: 35101753
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An integrated immunochromatographic device for C-reactive protein detection using hierarchical dendritic gold nanostructure films.
    Xu A; Li J; Zhang S; Pan H
    Anal Chim Acta; 2023 Aug; 1269():341402. PubMed ID: 37290857
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of Lateral Flow Immunochromatographic Strips for Micropollutants Screening Using Colorants of Aptamer Functionalized Nanogold Particles Part I Methodology and Optimization.
    Zhao S; Zhang S; Wang S; Liu J; Dong Y
    J AOAC Int; 2018 Sep; 101(5):1402-1407. PubMed ID: 29724260
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An aptamer-based effective method for highly sensitive detection of chloramphenicol residues in animal-sourced food using real-time fluorescent quantitative PCR.
    Duan Y; Wang L; Gao Z; Wang H; Zhang H; Li H
    Talanta; 2017 Apr; 165():671-676. PubMed ID: 28153315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A "signal-on'' aptasensor for simultaneous detection of chloramphenicol and polychlorinated biphenyls using multi-metal ions encoded nanospherical brushes as tracers.
    Yan Z; Gan N; Wang D; Cao Y; Chen M; Li T; Chen Y
    Biosens Bioelectron; 2015 Dec; 74():718-24. PubMed ID: 26210469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel single-stranded DNA binding protein-assisted fluorescence aptamer switch based on FRET for homogeneous detection of antibiotics.
    Wang Y; Gan N; Zhou Y; Li T; Cao Y; Chen Y
    Biosens Bioelectron; 2017 Jan; 87():508-513. PubMed ID: 27596250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A sensitive immunochromatographic assay using colloidal gold-antibody probe for rapid detection of fumonisin B1 in corn.
    Wang XC; Fan HX; Fan MX; Li FH; Feng SB; Li JC; Wu JJ; Li Y; Wang JS
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Sep; 33(9):1435-43. PubMed ID: 27424624
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Highly Sensitive Immunochromatographic Strip Test for Rapid and Quantitative Detection of Saikosaponin d.
    Zhang Y; Xiao W; Kong H; Cheng J; Yan X; Zhang M; Wang Q; Qu H; Zhao Y
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29415494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ultrasensitive immunochromatographic assay for the simultaneous detection of five chemicals in drinking water.
    Xing C; Liu L; Song S; Feng M; Kuang H; Xu C
    Biosens Bioelectron; 2015 Apr; 66():445-53. PubMed ID: 25499659
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enantioselective analysis of chloramphenicol residues in honey samples by chiral LC-MS/MS and results of a honey survey.
    Rimkus GG; Hoffmann D
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Jun; 34(6):950-961. PubMed ID: 28406359
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Determination of chloramphenicol residues in milk, eggs, and tissues by liquid chromatography/mass spectrometry.
    Penney L; Smith A; Coates B; Wijewickreme A
    J AOAC Int; 2005; 88(2):645-53. PubMed ID: 15859093
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impedance Analysis of Colloidal Gold Nanoparticles in Chromatography Paper for Quantitation of an Immunochromatographic Assay.
    Hori F; Harada Y; Kuretake T; Uno S
    Anal Sci; 2016; 32(3):355-9. PubMed ID: 26960618
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Label-free immunoassay for chloramphenicol based on hollow gold nanospheres/chitosan composite.
    Zhang N; Xiao F; Bai J; Lai Y; Hou J; Xian Y; Jin L
    Talanta; 2011 Dec; 87():100-5. PubMed ID: 22099655
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Surface plasmon resonance assay for chloramphenicol.
    Yuan J; Oliver R; Aguilar MI; Wu Y
    Anal Chem; 2008 Nov; 80(21):8329-33. PubMed ID: 18837517
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Optimization of a method of solid-phase immunoenzyme analysis for determination of chloramphenicol in milk].
    Kolosova AIu; Samsonova ZhV; Egorov AM; Shevaleva SA; Orlova NG; Kiseleva TV; Khotimchenko SA; Tutel'ian VA
    Vopr Pitan; 1999; 68(1):23-7. PubMed ID: 10198960
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development of Immunochromatographic Assay for the Rapid Detection of
    Zhu Z; Qu G; Wang C; Wang L; Du J; Li Q; Shen Z; Chen X
    Front Microbiol; 2021; 12():743980. PubMed ID: 35087481
    [No Abstract]   [Full Text] [Related]  

  • 39. Beetle-inspired AuNPs semi-embedded colloidal crystal chips for the highly sensitive and colored detection of chloramphenicol in foods.
    Zhou J; Li D; Nan J; Zhang N; Zhao H; Xia H; Chang Z; Sai N
    Food Chem; 2024 Oct; 454():139650. PubMed ID: 38788478
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A novel biosensor based on competitive SERS immunoassay and magnetic separation for accurate and sensitive detection of chloramphenicol.
    Yang K; Hu Y; Dong N
    Biosens Bioelectron; 2016 Jun; 80():373-377. PubMed ID: 26866562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.