BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 25412224)

  • 1. Electrical cell-substrate impedance sensing with field-effect transistors is able to unravel cellular adhesion and detachment processes on a single cell level.
    Susloparova A; Koppenhöfer D; Law JK; Vu XT; Ingebrandt S
    Lab Chip; 2015 Feb; 15(3):668-79. PubMed ID: 25412224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis.
    Heileman K; Daoud J; Tabrizian M
    Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PEDOT:PSS organic electrochemical transistors for electrical cell-substrate impedance sensing down to single cells.
    Hempel F; Law JKY; Nguyen TC; Lanche R; Susloparova A; Vu XT; Ingebrandt S
    Biosens Bioelectron; 2021 May; 180():113101. PubMed ID: 33691239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neurodegeneration through oxidative stress: monitoring hydrogen peroxide induced apoptosis in primary cells from the subventricular zone of BALB/c mice using field-effect transistors.
    Koppenhöfer D; Kettenbaum F; Susloparova A; Law JK; Vu XT; Schwab T; Schäfer KH; Ingebrandt S
    Biosens Bioelectron; 2015 May; 67():490-6. PubMed ID: 25241122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and validation of a multi-electrode bioimpedance system for enhancing spatial resolution of cellular impedance studies.
    Alexander FA; Celestin M; Price DT; Nanjundan M; Bhansali S
    Analyst; 2013 Jul; 138(13):3728-34. PubMed ID: 23689543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical impedance characterization of cell growth on interdigitated microelectrode array.
    Lee GH; Pyun JC; Cho S
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8342-6. PubMed ID: 25958525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design rule for optimization of microelectrodes used in electric cell-substrate impedance sensing (ECIS).
    Price DT; Rahman AR; Bhansali S
    Biosens Bioelectron; 2009 Mar; 24(7):2071-6. PubMed ID: 19101134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human T cells monitored by impedance spectrometry using field-effect transistor arrays: a novel tool for single-cell adhesion and migration studies.
    Law JK; Susloparova A; Vu XT; Zhou X; Hempel F; Qu B; Hoth M; Ingebrandt S
    Biosens Bioelectron; 2015 May; 67():170-6. PubMed ID: 25155061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impedance spectroscopy with field-effect transistor arrays for the analysis of anti-cancer drug action on individual cells.
    Susloparova A; Koppenhöfer D; Vu XT; Weil M; Ingebrandt S
    Biosens Bioelectron; 2013 Feb; 40(1):50-6. PubMed ID: 22795530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis.
    Arndt S; Seebach J; Psathaki K; Galla HJ; Wegener J
    Biosens Bioelectron; 2004 Jan; 19(6):583-94. PubMed ID: 14683642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A detailed model for high-frequency impedance characterization of ovarian cancer epithelial cell layer using ECIS electrodes.
    Rahman AR; Lo CM; Bhansali S
    IEEE Trans Biomed Eng; 2009 Feb; 56(2):485-92. PubMed ID: 19272881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time quantitative monitoring of hiPSC-based model of macular degeneration on Electric Cell-substrate Impedance Sensing microelectrodes.
    Gamal W; Borooah S; Smith S; Underwood I; Srsen V; Chandran S; Bagnaninchi PO; Dhillon B
    Biosens Bioelectron; 2015 Sep; 71():445-455. PubMed ID: 25950942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of electric cell-substrate impedance sensing as a tool for quantifying cytopathic effect in influenza A virus infected MDCK cells in real-time.
    McCoy MH; Wang E
    J Virol Methods; 2005 Dec; 130(1-2):157-61. PubMed ID: 16095727
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces.
    Wegener J; Keese CR; Giaever I
    Exp Cell Res; 2000 Aug; 259(1):158-66. PubMed ID: 10942588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extended electrical model for impedance characterization of cultured HeLa cells in non-confluent state using ECIS electrodes.
    Mondal D; RoyChaudhuri C
    IEEE Trans Nanobioscience; 2013 Sep; 12(3):239-46. PubMed ID: 23995584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impedimetric monitoring of IGF-1 protection of in vitro cortical neurons under ischemic conditions.
    Huang SH; Lin SP; Liang CK; Chen JJ
    Biomed Microdevices; 2013 Feb; 15(1):135-43. PubMed ID: 22932956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High spatial resolution impedance measurement of EIS sensors for light addressable cell adhesion monitoring.
    Yu H; Wang J; Liu Q; Zhang W; Cai H; Wang P
    Biosens Bioelectron; 2011 Feb; 26(6):2822-7. PubMed ID: 21196110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impedance analysis of cultured cells: a mean-field electrical response model for electric cell-substrate impedance sensing technique.
    Urdapilleta E; Bellotti M; Bonetto FJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Oct; 74(4 Pt 1):041908. PubMed ID: 17155097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell culture monitoring by impedance mapping using a multielectrode scanning impedance spectroscopy system (CellMap).
    Rahman AR; Register J; Vuppala G; Bhansali S
    Physiol Meas; 2008 Jun; 29(6):S227-39. PubMed ID: 18544796
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CMOS based whole cell impedance sensing: Challenges and future outlook.
    Hedayatipour A; Aslanzadeh S; McFarlane N
    Biosens Bioelectron; 2019 Oct; 143():111600. PubMed ID: 31479988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.