These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25412224)

  • 41. Noninvasive probing of inhibitory effects of cylindrospermopsin and microcystin-LR using cell-based impedance spectroscopy.
    Male KB; Tom R; Durocher Y; Greer C; Luong JH
    Environ Sci Technol; 2010 Sep; 44(17):6775-81. PubMed ID: 20701281
    [TBL] [Abstract][Full Text] [Related]  

  • 42. In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers.
    Lin HL; Lin CC; Ju MS; Liao JD
    Biomed Microdevices; 2011 Feb; 13(1):243-53. PubMed ID: 20972888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combining optical and electrical impedance techniques for quantitative measurement of confluence in MDCK-I cell cultures.
    De Blasio BF; Laane M; Walmann T; Giaever I
    Biotechniques; 2004 Apr; 36(4):650-4, 656, 658 passim. PubMed ID: 15088383
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrical dual-sensing method for real-time quantitative monitoring of cell-secreted MMP-9 and cellular morphology during migration process.
    Tran TB; Nguyen PD; Baek C; Min J
    Biosens Bioelectron; 2016 Mar; 77():631-7. PubMed ID: 26485177
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Hydrogel-based diffusion chip with Electric Cell-substrate Impedance Sensing (ECIS) integration for cell viability assay and drug toxicity screening.
    Tran TB; Cho S; Min J
    Biosens Bioelectron; 2013 Dec; 50():453-9. PubMed ID: 23911660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electrode-Electrolyte Interface Impedance Characterization of Ultra-Miniaturized Microelectrode Arrays Over Materials and Geometries for Sub-Cellular and Cellular Sensing and Stimulation.
    Wang A; Jung D; Park J; Junek G; Wang H
    IEEE Trans Nanobioscience; 2019 Apr; 18(2):248-252. PubMed ID: 30892229
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Battery-powered portable instrument system for single-cell trapping, impedance measurements, and modeling analyses.
    Tsai SL; Chiang Y; Wang MH; Chen MK; Jang LS
    Electrophoresis; 2014 Aug; 35(16):2392-400. PubMed ID: 24610717
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Three-Dimensional (3D) cell culture monitoring: Opportunities and challenges for impedance spectroscopy.
    De León SE; Pupovac A; McArthur SL
    Biotechnol Bioeng; 2020 Apr; 117(4):1230-1240. PubMed ID: 31956986
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A computational modeling and analysis in cell biological dynamics using electric cell-substrate impedance sensing (ECIS).
    Chen SW; Yang JM; Yang JH; Yang SJ; Wang JS
    Biosens Bioelectron; 2012 Mar; 33(1):196-203. PubMed ID: 22261483
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real-time monitoring in vitro cellular cytotoxicity of silica nanotubes using electric cell-substrate impedance sensing (ECIS).
    Tran TB; Nguyen PD; Um SH; Son SJ; Min J
    J Biomed Nanotechnol; 2013 Feb; 9(2):286-90. PubMed ID: 23627056
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The region ion sensitive field effect transistor, a novel bioelectronic nanosensor.
    Risveden K; Pontén JF; Calander N; Willander M; Danielsson B
    Biosens Bioelectron; 2007 Jun; 22(12):3105-12. PubMed ID: 17400440
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrical Characterization of 3D Au Microelectrodes for Use in Retinal Prostheses.
    Lee S; Ahn JH; Seo JM; Chung H; Cho DI
    Sensors (Basel); 2015 Jun; 15(6):14345-55. PubMed ID: 26091397
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impedimetric real-time monitoring of neural pluripotent stem cell differentiation process on microelectrode arrays.
    Seidel D; Obendorf J; Englich B; Jahnke HG; Semkova V; Haupt S; Girard M; Peschanski M; Brüstle O; Robitzki AA
    Biosens Bioelectron; 2016 Dec; 86():277-286. PubMed ID: 27387257
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of polydeoxyribonucleotides (PDRN) on wound healing: Electric cell-substrate impedance sensing (ECIS).
    Koo Y; Yun Y
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():554-60. PubMed ID: 27612747
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Monitoring motility, spreading, and mortality of adherent insect cells using an impedance sensor.
    Luong JH; Habibi-Rezaei M; Meghrous J; Xiao C; Male KB; Kamen A
    Anal Chem; 2001 Apr; 73(8):1844-8. PubMed ID: 11338600
    [TBL] [Abstract][Full Text] [Related]  

  • 56. ECIS Based Electric Fence Method for Measurement of Human Keratinocyte Migration on Different Substrates.
    Hung YH; Chiu WC; Fuh SR; Lai YT; Tung TH; Huang CC; Lo CM
    Biosensors (Basel); 2022 May; 12(5):. PubMed ID: 35624596
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stretchable impedance sensor for mammalian cell proliferation measurements.
    Zhang X; Wang W; Li F; Voiculescu I
    Lab Chip; 2017 Jun; 17(12):2054-2066. PubMed ID: 28513702
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Feasibility of Tracking Multiple Single-Cell Properties with Impedance Spectroscopy.
    Ren D; Chui CO
    ACS Sens; 2018 May; 3(5):1005-1015. PubMed ID: 29737153
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Monitoring viral-induced cell death using electric cell-substrate impedance sensing.
    Campbell CE; Laane MM; Haugarvoll E; Giaever I
    Biosens Bioelectron; 2007 Nov; 23(4):536-42. PubMed ID: 17826975
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Use of cellular electrical impedance sensing to assess in vitro cytotoxicity of anticancer drugs in a human kidney cell nephrotoxicity model.
    Xie F; Xu Y; Wang L; Mitchelson K; Xing W; Cheng J
    Analyst; 2012 Mar; 137(6):1343-50. PubMed ID: 22214987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.