BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25412230)

  • 1. The force dependence of isometric and concentric potentiation in mouse muscle with and without skeletal myosin light chain kinase.
    Gittings W; Aggarwal H; Stull JT; Vandenboom R
    Can J Physiol Pharmacol; 2015 Jan; 93(1):23-32. PubMed ID: 25412230
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Myosin light chain phosphorylation is required for peak power output of mouse fast skeletal muscle in vitro.
    Bowslaugh J; Gittings W; Vandenboom R
    Pflugers Arch; 2016 Nov; 468(11-12):2007-2016. PubMed ID: 27896430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shortening speed dependent force potentiation is attenuated but not eliminated in skeletal muscles without myosin phosphorylation.
    Gittings W; Bunda J; Vandenboom R
    J Muscle Res Cell Motil; 2017 Apr; 38(2):157-162. PubMed ID: 28251466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of skeletal myosin light chain kinase gene ablation on the fatigability of mouse fast muscle.
    Gittings W; Huang J; Smith IC; Quadrilatero J; Vandenboom R
    J Muscle Res Cell Motil; 2011 Mar; 31(5-6):337-48. PubMed ID: 21298329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myosin phosphorylation improves contractile economy of mouse fast skeletal muscle during staircase potentiation.
    Bunda J; Gittings W; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29361581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epinephrine augments posttetanic potentiation in mouse skeletal muscle with and without myosin phosphorylation.
    Morris SR; Gittings W; Vandenboom R
    Physiol Rep; 2018 May; 6(9):e13690. PubMed ID: 29718592
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of muscle length on post-tetanic potentiation of C57BL/6 and skMLCK
    Angelidis A; Vandenboom R
    J Muscle Res Cell Motil; 2022 Sep; 43(3):99-111. PubMed ID: 35771335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of posttetanic potentiation and the catchlike property in mouse skeletal muscle.
    Gittings W; Bunda J; Stull JT; Vandenboom R
    Muscle Nerve; 2016 Aug; 54(2):308-16. PubMed ID: 26802366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tetanic force potentiation of mouse fast muscle is shortening speed dependent.
    Gittings W; Huang J; Vandenboom R
    J Muscle Res Cell Motil; 2012 Oct; 33(5):359-68. PubMed ID: 23054096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of work cycle frequency on the potentiation of dynamic force in mouse fast twitch skeletal muscle.
    Caterini D; Gittings W; Huang J; Vandenboom R
    J Exp Biol; 2011 Dec; 214(Pt 23):3915-23. PubMed ID: 22071182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced skeletal muscle contraction with myosin light chain phosphorylation by a calmodulin-sensing kinase.
    Ryder JW; Lau KS; Kamm KE; Stull JT
    J Biol Chem; 2007 Jul; 282(28):20447-54. PubMed ID: 17504755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lack of influence of estrogen on myosin phosphorylation and post-tetanic potentiation in muscles from young adult C57BL mice.
    Fillion M; Tiidus PM; Vandenboom R
    Can J Physiol Pharmacol; 2019 Aug; 97(8):729-737. PubMed ID: 30889364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentiation of force by extracellular potassium and posttetanic potentiation are additive in mouse fast-twitch muscle in vitro.
    Overgaard K; Gittings W; Vandenboom R
    Pflugers Arch; 2022 Jun; 474(6):637-646. PubMed ID: 35266019
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin light-chain phosphorylation and potentiation of dynamic function in mouse fast muscle.
    Xeni J; Gittings WB; Caterini D; Huang J; Houston ME; Grange RW; Vandenboom R
    Pflugers Arch; 2011 Aug; 462(2):349-58. PubMed ID: 21499697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potentiation in mouse lumbrical muscle without myosin light chain phosphorylation: is resting calcium responsible?
    Smith IC; Gittings W; Huang J; McMillan EM; Quadrilatero J; Tupling AR; Vandenboom R
    J Gen Physiol; 2013 Mar; 141(3):297-308. PubMed ID: 23401574
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myosin phosphorylation potentiates steady-state work output without altering contractile economy of mouse fast skeletal muscles.
    Gittings W; Bunda J; Vandenboom R
    J Exp Biol; 2018 Jan; 221(Pt 2):. PubMed ID: 29122950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle.
    Stull JT; Kamm KE; Vandenboom R
    Arch Biochem Biophys; 2011 Jun; 510(2):120-8. PubMed ID: 21284933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Posttetanic potentiation improves neuromuscular efficiency of mouse muscle in vitro.
    Laidlaw R; Vandenboom R
    Physiol Rep; 2022 Dec; 10(23):e15529. PubMed ID: 36461650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alteration of cross-bridge kinetics by myosin light chain phosphorylation in rabbit skeletal muscle: implications for regulation of actin-myosin interaction.
    Sweeney HL; Stull JT
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):414-8. PubMed ID: 2136951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene Transfer of Skeletal Muscle-Type Myosin Light Chain Kinase via Adeno-Associated Virus 6 Improves Muscle Functions in an Amyotrophic Lateral Sclerosis Mouse Model.
    Oya R; Tsukamoto O; Hitsumoto T; Nakahara N; Okamoto C; Matsuoka K; Kato H; Inohara H; Takashima S
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.