These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 25412230)

  • 21. Potentiation of in vitro concentric work in mouse fast muscle.
    Grange RW; Vandenboom R; Xeni J; Houston ME
    J Appl Physiol (1985); 1998 Jan; 84(1):236-43. PubMed ID: 9451641
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Threshold for force potentiation associated with skeletal myosin phosphorylation.
    Vandenboom R; Grange RW; Houston ME
    Am J Physiol; 1993 Dec; 265(6 Pt 1):C1456-62. PubMed ID: 8279509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Myosin phosphorylation and force potentiation in skeletal muscle: evidence from animal models.
    Vandenboom R; Gittings W; Smith IC; Grange RW; Stull JT
    J Muscle Res Cell Motil; 2013 Dec; 34(5-6):317-32. PubMed ID: 24162313
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impairment of muscle function caused by mutations of phosphorylation sites in myosin regulatory light chain.
    Tohtong R; Yamashita H; Graham M; Haeberle J; Simcox A; Maughan D
    Nature; 1995 Apr; 374(6523):650-3. PubMed ID: 7715706
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Length-dependence of isometric twitch tension potentiation and myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Persechini A
    J Cell Physiol; 1990 May; 143(2):257-62. PubMed ID: 2332450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of temperature on myosin phosphorylation in mouse skeletal muscle.
    Moore RL; Palmer BM; Williams SL; Tanabe H; Grange RW; Houston ME
    Am J Physiol; 1990 Sep; 259(3 Pt 1):C432-8. PubMed ID: 2399966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphorylation of rabbit skeletal muscle myosin in situ.
    Moore RL; Houston ME; Iwamoto GA; Stull JT
    J Cell Physiol; 1985 Nov; 125(2):301-5. PubMed ID: 4055914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Length-dependent potentiation and myosin light chain phosphorylation in rat gastrocnemius muscle.
    Rassier DE; Tubman LA; MacIntosh BR
    Am J Physiol; 1997 Jul; 273(1 Pt 1):C198-204. PubMed ID: 9252457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-tetanic potentiation increases energy cost to a higher extent than work in rat fast skeletal muscle.
    Abbate F; Van Der Velden J; Stienen GJ; De Haan A
    J Muscle Res Cell Motil; 2001; 22(8):703-10. PubMed ID: 12222831
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Coexistence of potentiation and fatigue in skeletal muscle.
    Rassier DE; Macintosh BR
    Braz J Med Biol Res; 2000 May; 33(5):499-508. PubMed ID: 10775880
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphorylation of myosin and twitch potentiation in fatigued skeletal muscle.
    Vandenboom R; Houston ME
    Can J Physiol Pharmacol; 1996 Dec; 74(12):1315-21. PubMed ID: 9047041
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Juxtaposition of the changes in intracellular calcium and force during staircase potentiation at 30 and 37°C.
    Smith IC; Vandenboom R; Tupling AR
    J Gen Physiol; 2014 Dec; 144(6):561-70. PubMed ID: 25422504
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Muscle activation and force production during bilateral and unilateral concentric and isometric contractions of the knee extensors in men and women at different ages.
    Häkkinen K; Kraemer WJ; Newton RU
    Electromyogr Clin Neurophysiol; 1997; 37(3):131-42. PubMed ID: 9187864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isometric and concentric performance of electrically stimulated ankle plantar flexor muscles in intact rat.
    Willems ME; Stauber WT
    Exp Physiol; 1999 Mar; 84(2):379-89. PubMed ID: 10226178
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Peak power of muscles injured by lengthening contractions.
    Widrick JJ; Barker T
    Muscle Nerve; 2006 Oct; 34(4):470-7. PubMed ID: 16810694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potentiation of shortening and velocity of shortening during repeated isotonic tetanic contractions in mammalian skeletal muscle.
    MacIntosh BR; Bryan SN
    Pflugers Arch; 2002 Mar; 443(5-6):804-12. PubMed ID: 11889579
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological significance of myosin phosphorylation in skeletal muscle.
    Grange RW; Vandenboom R; Houston ME
    Can J Appl Physiol; 1993 Sep; 18(3):229-42. PubMed ID: 8242003
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Myosin phosphorylation augments force-displacement and force-velocity relationships of mouse fast muscle.
    Grange RW; Cory CR; Vandenboom R; Houston ME
    Am J Physiol; 1995 Sep; 269(3 Pt 1):C713-24. PubMed ID: 7573402
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ablation of skeletal muscle estrogen receptor alpha impairs contractility in male mice.
    Sullivan BP; Collins BC; McMillin SL; Toussaint E; Stein CZ; Spangenburg EE; Lowe DA
    J Appl Physiol (1985); 2024 Apr; 136(4):764-773. PubMed ID: 38328824
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of electromyographic activity during eccentrically versus concentrically loaded isometric contractions.
    Garner JC; Blackburn T; Weimar W; Campbell B
    J Electromyogr Kinesiol; 2008 Jun; 18(3):466-71. PubMed ID: 17257859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.