BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25412253)

  • 41. Microfluidic directed formation of liposomes of controlled size.
    Jahn A; Vreeland WN; DeVoe DL; Locascio LE; Gaitan M
    Langmuir; 2007 May; 23(11):6289-93. PubMed ID: 17451256
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Utilization of solid lipid nanoparticles for enhanced delivery of curcumin in cocultures of HT29-MTX and Caco-2 cells.
    Guri A; Gülseren I; Corredig M
    Food Funct; 2013 Sep; 4(9):1410-9. PubMed ID: 23921424
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced electrostatic interaction between chitosan-modified PLGA nanoparticle and tumor.
    Yang R; Shim WS; Cui FD; Cheng G; Han X; Jin QR; Kim DD; Chung SJ; Shim CK
    Int J Pharm; 2009 Apr; 371(1-2):142-7. PubMed ID: 19118614
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluation of a human corneal epithelial cell line as an in vitro model for assessing ocular irritation.
    Kruszewski FH; Walker TL; DiPasquale LC
    Fundam Appl Toxicol; 1997 Apr; 36(2):130-40. PubMed ID: 9143482
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular uptake and elimination of lipophilic drug delivered by nanocarriers.
    Sun X; Li F; Wang Y; Liang W
    Pharmazie; 2010 Oct; 65(10):737-42. PubMed ID: 21105575
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Octa-arginine modified lipid emulsions as a potential ocular delivery system for disulfiram: A study of the corneal permeation, transcorneal mechanism and anti-cataract effect.
    Liu C; Lan Q; He W; Nie C; Zhang C; Xu T; Jiang T; Wang S
    Colloids Surf B Biointerfaces; 2017 Dec; 160():305-314. PubMed ID: 28950195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Effect of Surface Charges on the Cellular Uptake of Liposomes Investigated by Live Cell Imaging.
    Kang JH; Jang WY; Ko YT
    Pharm Res; 2017 Apr; 34(4):704-717. PubMed ID: 28078484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Investigation of biomimetic shear stress on cellular uptake and mechanism of polystyrene nanoparticles in various cancer cell lines.
    Kang T; Park C; Lee BJ
    Arch Pharm Res; 2016 Dec; 39(12):1663-1670. PubMed ID: 27761800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin.
    Wei M; Xu Y; Zou Q; Tu L; Tang C; Xu T; Deng L; Wu C
    Eur J Pharm Sci; 2012 Jun; 46(3):131-41. PubMed ID: 22369856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Novel Drug Delivery System for Dermal Uptake of Etofenamate: Semisolid SLN Dispersion.
    Badilli U; Sengel-Turk CT; Amasya G; Tarimci N
    Curr Drug Deliv; 2017; 14(3):386-393. PubMed ID: 27501715
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Advances in nanomedicines for malaria treatment.
    Aditya NP; Vathsala PG; Vieira V; Murthy RS; Souto EB
    Adv Colloid Interface Sci; 2013 Dec; 201-202():1-17. PubMed ID: 24192063
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Transcorneal drug delivery: prospects for the use of liposomes].
    Aliautdin RN; Iezhitsa IN; Agarval R
    Vestn Oftalmol; 2014; 130(4):117-22. PubMed ID: 25306734
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors.
    Nafee N; Husari A; Maurer CK; Lu C; de Rossi C; Steinbach A; Hartmann RW; Lehr CM; Schneider M
    J Control Release; 2014 Oct; 192():131-40. PubMed ID: 24997276
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Preparation of diclofenac sodium liposomes and its ocular pharmacokinetics].
    Sun KX; Wang AP; Huang LJ; Liang RC; Liu K
    Yao Xue Xue Bao; 2006 Nov; 41(11):1094-8. PubMed ID: 17262954
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo pharmacokinetics and biodistribution of resveratrol-loaded solid lipid nanoparticles for brain delivery.
    Jose S; Anju SS; Cinu TA; Aleykutty NA; Thomas S; Souto EB
    Int J Pharm; 2014 Oct; 474(1-2):6-13. PubMed ID: 25102112
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Intracellular trafficking of solid lipid nanoparticles and their distribution between cells through tunneling nanotubes.
    Kristl J; Plajnšek KT; Kreft ME; Janković B; Kocbek P
    Eur J Pharm Sci; 2013 Sep; 50(1):139-48. PubMed ID: 23628779
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improved transport and absorption through gastrointestinal tract by PEGylated solid lipid nanoparticles.
    Yuan H; Chen CY; Chai GH; Du YZ; Hu FQ
    Mol Pharm; 2013 May; 10(5):1865-73. PubMed ID: 23495754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Pharmacokinetics study of arteether loaded solid lipid nanoparticles: an improved oral bioavailability in rats.
    Dwivedi P; Khatik R; Khandelwal K; Taneja I; Raju KS; Wahajuddin ; Paliwal SK; Dwivedi AK; Mishra PR
    Int J Pharm; 2014 May; 466(1-2):321-7. PubMed ID: 24657144
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A novel solid lipid nanoparticle formulation for active targeting to tumor α(v) β(3) integrin receptors reveals cyclic RGD as a double-edged sword.
    Shuhendler AJ; Prasad P; Leung M; Rauth AM; Dacosta RS; Wu XY
    Adv Healthc Mater; 2012 Sep; 1(5):600-8. PubMed ID: 23184795
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Idebenone loaded solid lipid nanoparticles interact with biomembrane models: calorimetric evidence.
    Montenegro L; Ottimo S; Puglisi G; Castelli F; Sarpietro MG
    Mol Pharm; 2012 Sep; 9(9):2534-41. PubMed ID: 22894135
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.