These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25412466)

  • 41. Mapping sub-antarctic cushion plants using random forests to combine very high resolution satellite imagery and terrain modelling.
    Bricher PK; Lucieer A; Shaw J; Terauds A; Bergstrom DM
    PLoS One; 2013; 8(8):e72093. PubMed ID: 23940805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Increasing Accuracy: A New Design and Algorithm for Automatically Measuring Weights, Travel Direction and Radio Frequency Identification (RFID) of Penguins.
    Afanasyev V; Buldyrev SV; Dunn MJ; Robst J; Preston M; Bremner SF; Briggs DR; Brown R; Adlard S; Peat HJ
    PLoS One; 2015; 10(4):e0126292. PubMed ID: 25894763
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Semi-Supervised Deep Rule-Based Approach for Complex Satellite Sensor Image Analysis.
    Gu X; Angelov PP; Zhang C; Atkinson PM
    IEEE Trans Pattern Anal Mach Intell; 2022 May; 44(5):2281-2292. PubMed ID: 33378259
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Predictive performance of regression models to estimate Chlorophyll-a concentration based on Landsat imagery.
    Matus-Hernández MÁ; Hernández-Saavedra NY; Martínez-Rincón RO
    PLoS One; 2018; 13(10):e0205682. PubMed ID: 30312339
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.
    Renosh PR; Schmitt FG; Loisel H
    PLoS One; 2015; 10(5):e0126975. PubMed ID: 26017551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Adélie penguins and temperature changes in Antarctica: a long-term view.
    Millar CD; Subramanian S; Heupink TH; Swaminathan S; Baroni C; Lambert DM
    Integr Zool; 2012 Jun; 7(2):113-20. PubMed ID: 22691195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Remote Sensing and Wetland Ecology: a South African Case Study.
    De Roeck ER; Verhoest NE; Miya MH; Lievens H; Batelaan O; Thomas A; Brendonck L
    Sensors (Basel); 2008 May; 8(5):3542-3556. PubMed ID: 27879892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Estimation of woody plant species diversity during a dry season in a savanna environment using the spectral and textural information derived from WorldView-2 imagery.
    Fundisi E; Musakwa W; Ahmed FB; Tesfamichael SG
    PLoS One; 2020; 15(6):e0234158. PubMed ID: 32511261
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The rise and fall of an ancient Adélie penguin 'supercolony' at Cape Adare, Antarctica.
    Emslie SD; McKenzie A; Patterson WP
    R Soc Open Sci; 2018 Apr; 5(4):172032. PubMed ID: 29765656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. High-resolution mapping of global surface water and its long-term changes.
    Pekel JF; Cottam A; Gorelick N; Belward AS
    Nature; 2016 Dec; 540(7633):418-422. PubMed ID: 27926733
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Counting penguins with drones.
    Popović M
    Sci Robot; 2020 Oct; 5(47):. PubMed ID: 33115885
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Processing citizen science- and machine-annotated time-lapse imagery for biologically meaningful metrics.
    Jones FM; Arteta C; Zisserman A; Lempitsky V; Lintott CJ; Hart T
    Sci Data; 2020 Mar; 7(1):102. PubMed ID: 32218449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The phylogeography of Adelie penguin faecal flora.
    Banks JC; Cary SC; Hogg ID
    Environ Microbiol; 2009 Mar; 11(3):577-88. PubMed ID: 19040454
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Corticosterone and foraging behavior in a diving seabird: the Adélie penguin, Pygoscelis adeliae.
    Angelier F; Bost CA; Giraudeau M; Bouteloup G; Dano S; Chastel O
    Gen Comp Endocrinol; 2008 Mar; 156(1):134-44. PubMed ID: 18221738
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Soil salinity detection from satellite image analysis: an integrated approach of salinity indices and field data.
    Morshed MM; Islam MT; Jamil R
    Environ Monit Assess; 2016 Feb; 188(2):119. PubMed ID: 26815557
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Aerial-trained deep learning networks for surveying cetaceans from satellite imagery.
    Borowicz A; Le H; Humphries G; Nehls G; Höschle C; Kosarev V; Lynch HJ
    PLoS One; 2019; 14(10):e0212532. PubMed ID: 31574136
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Integrating satellite imagery with simulation modeling to improve burn severity mapping.
    Karau EC; Sikkink PG; Keane RE; Dillon GK
    Environ Manage; 2014 Jul; 54(1):98-111. PubMed ID: 24817334
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A comparison of baleen whale density estimates derived from overlapping satellite imagery and a shipborne survey.
    Bamford CCG; Kelly N; Dalla Rosa L; Cade DE; Fretwell PT; Trathan PN; Cubaynes HC; Mesquita AFC; Gerrish L; Friedlaender AS; Jackson JA
    Sci Rep; 2020 Jul; 10(1):12985. PubMed ID: 32737390
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Exogenous corticosterone and nest abandonment: a study in a long-lived bird, the Adélie penguin.
    Spée M; Marchal L; Lazin D; Le Maho Y; Chastel O; Beaulieu M; Raclot T
    Horm Behav; 2011 Sep; 60(4):362-70. PubMed ID: 21763694
    [TBL] [Abstract][Full Text] [Related]  

  • 60. When the "selfish herd" becomes the "frozen herd": spatial dynamics and population persistence in a colonial seabird.
    McDowall PS; Lynch HJ
    Ecology; 2019 Oct; 100(10):e02823. PubMed ID: 31310664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.