These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 25412641)

  • 41. Chaperone-assisted assembly and molecular architecture of adhesive pili.
    Hultgren SJ; Normark S; Abraham SN
    Annu Rev Microbiol; 1991; 45():383-415. PubMed ID: 1683764
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Disparate subcellular localization patterns of Pseudomonas aeruginosa Type IV pilus ATPases involved in twitching motility.
    Chiang P; Habash M; Burrows LL
    J Bacteriol; 2005 Feb; 187(3):829-39. PubMed ID: 15659660
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library.
    Overhage J; Lewenza S; Marr AK; Hancock RE
    J Bacteriol; 2007 Mar; 189(5):2164-9. PubMed ID: 17158671
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Pili-Induced Clustering of N. gonorrhoeae Bacteria.
    Taktikos J; Lin YT; Stark H; Biais N; Zaburdaev V
    PLoS One; 2015; 10(9):e0137661. PubMed ID: 26355966
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [Visualization method of type Ⅳ pili and its application in the study of pili function].
    Luo Y; Zhang J
    Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4534-4549. PubMed ID: 38013182
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of type IV pili in virulence of Pseudomonas syringae pv. tabaci 6605: correlation of motility, multidrug resistance, and HR-inducing activity on a nonhost plant.
    Taguchi F; Ichinose Y
    Mol Plant Microbe Interact; 2011 Sep; 24(9):1001-11. PubMed ID: 21615203
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Pilus retraction powers bacterial twitching motility.
    Merz AJ; So M; Sheetz MP
    Nature; 2000 Sep; 407(6800):98-102. PubMed ID: 10993081
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bacterial adhesion and growth on a polymer brush-coating.
    Nejadnik MR; van der Mei HC; Norde W; Busscher HJ
    Biomaterials; 2008 Oct; 29(30):4117-21. PubMed ID: 18674814
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Power of Touch: Type 4 Pili, the von Willebrand A Domain, and Surface Sensing by Pseudomonas aeruginosa.
    Webster SS; Wong GCL; O'Toole GA
    J Bacteriol; 2022 Jun; 204(6):e0008422. PubMed ID: 35612303
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces.
    Cookson AL; Cooley WA; Woodward MJ
    Int J Med Microbiol; 2002 Sep; 292(3-4):195-205. PubMed ID: 12398210
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.
    Pingle H; Wang PY; Thissen H; McArthur S; Kingshott P
    Biointerphases; 2015 Dec; 10(4):04A309. PubMed ID: 26634448
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Surface plasmon resonance shows that type IV pili are important in surface attachment by Pseudomonas aeruginosa.
    Jenkins AT; Buckling A; McGhee M; ffrench-Constant RH
    J R Soc Interface; 2005 Jun; 2(3):255-9. PubMed ID: 16849183
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physics of bacterial near-surface motility using flagella and type IV pili: implications for biofilm formation.
    Conrad JC
    Res Microbiol; 2012; 163(9-10):619-29. PubMed ID: 23103335
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Interactions of alginate-producing and -deficient Pseudomonas aeruginosa with zwitterionic polymers.
    Huang CJ; Mi L; Jiang S
    Biomaterials; 2012 May; 33(14):3626-31. PubMed ID: 22349288
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bacterial mechanosensing: the force will be with you, always.
    Gordon VD; Wang L
    J Cell Sci; 2019 Apr; 132(7):. PubMed ID: 30944157
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanopillared Surfaces Disrupt Pseudomonas aeruginosa Mechanoresponsive Upstream Motility.
    Rosenzweig R; Perinbam K; Ly VK; Ahrar S; Siryaporn A; Yee AF
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10532-10539. PubMed ID: 30789254
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Bacterial motility: machinery and mechanisms.
    Wadhwa N; Berg HC
    Nat Rev Microbiol; 2022 Mar; 20(3):161-173. PubMed ID: 34548639
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Host cell surfaces induce a Type IV pili-dependent alteration of bacterial swimming.
    Golovkine G; Lemelle L; Burny C; Vaillant C; Palierne JF; Place C; Huber P
    Sci Rep; 2016 Dec; 6():38950. PubMed ID: 27966607
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Suicidal chemotaxis in bacteria.
    Oliveira NM; Wheeler JHR; Deroy C; Booth SC; Walsh EJ; Durham WM; Foster KR
    Nat Commun; 2022 Dec; 13(1):7608. PubMed ID: 36494355
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial attachment to polymeric materials correlates with molecular flexibility and hydrophilicity.
    Sanni O; Chang CY; Anderson DG; Langer R; Davies MC; Williams PM; Williams P; Alexander MR; Hook AL
    Adv Healthc Mater; 2015 Apr; 4(5):695-701. PubMed ID: 25491266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.