These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 25412691)

  • 1. In situ non-aqueous nucleation and growth of next generation rare-earth-free permanent magnets.
    Yoon H; Xu A; Sterbinsky GE; Arena DA; Wang Z; Stephens PW; Meng YS; Carroll KJ
    Phys Chem Chem Phys; 2015 Jan; 17(2):1070-6. PubMed ID: 25412691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense arrays of cobalt nanorods as rare-earth free permanent magnets.
    Anagnostopoulou E; Grindi B; Lacroix LM; Ott F; Panagiotopoulos I; Viau G
    Nanoscale; 2016 Feb; 8(7):4020-9. PubMed ID: 26817959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rare earth-cobalt hard magnetic nanoparticles and nanoflakes by high-energy milling.
    Gabay AM; Akdogan NG; Marinescu M; Liu JF; Hadjipanayis GC
    J Phys Condens Matter; 2010 Apr; 22(16):164213. PubMed ID: 21386419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical Synthesis of Magnetic Nanoparticles for Permanent Magnet Applications.
    Shen B; Sun S
    Chemistry; 2020 May; 26(30):6757-6766. PubMed ID: 31529572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Insight into the Property Enhancement Mechanism of Chemically Prepared Multi-Main-Phase (Nd,Ce)
    Zhu K; Xu J; Wang X; Li W; Tian K; Zhang X; Hou Y
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46549-46556. PubMed ID: 32964711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inspired by nature: investigating tetrataenite for permanent magnet applications.
    Lewis LH; Mubarok A; Poirier E; Bordeaux N; Manchanda P; Kashyap A; Skomski R; Goldstein J; Pinkerton FE; Mishra RK; Kubic RC; Barmak K
    J Phys Condens Matter; 2014 Feb; 26(6):064213. PubMed ID: 24469336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermal stability of MnBi magnetic materials.
    Cui J; Choi JP; Li G; Polikarpov E; Darsell J; Overman N; Olszta M; Schreiber D; Bowden M; Droubay T
    J Phys Condens Matter; 2014 Feb; 26(6):064212. PubMed ID: 24469323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic structure and domain wall pinning in samarium-cobalt-based permanent magnets.
    Duerrschnabel M; Yi M; Uestuener K; Liesegang M; Katter M; Kleebe HJ; Xu B; Gutfleisch O; Molina-Luna L
    Nat Commun; 2017 Jul; 8(1):54. PubMed ID: 28676636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Flame-Reaction Method for the Large-Scale Synthesis of High-Performance Sm
    Ma Z; Tian H; Cong L; Wu Q; Yue M; Sun S
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14509-14512. PubMed ID: 31402552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hf-Co and Zr-Co alloys for rare-earth-free permanent magnets.
    Balamurugan B; Das B; Zhang WY; Skomski R; Sellmyer DJ
    J Phys Condens Matter; 2014 Feb; 26(6):064204. PubMed ID: 24468962
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.
    Jiang Y; Mehedi MA; Fu E; Wang Y; Allard LF; Wang JP
    Sci Rep; 2016 May; 6():25436. PubMed ID: 27145983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exchange-coupled fct-FePd/α-Fe nanocomposite magnets converted from Pd/Fe3O4 core/shell nanoparticles.
    Liu F; Dong Y; Yang W; Yu J; Xu Z; Hou Y
    Chemistry; 2014 Nov; 20(46):15197-202. PubMed ID: 25255788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimized Route for the Fabrication of MnAlC Permanent Magnets by Arc Melting.
    Martínez-Sánchez H; Gámez JD; Valenzuela JL; Colorado HD; Marín L; Rodríguez LA; Snoeck E; Gatel C; Zamora LE; Pérez Alcázar GA; Tabares JA
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500440
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanochemically Processed Nd-Fe-Co-Cr-B Nanoparticles with High Coercivity and Reduced Spin Reorientation Transition Temperature.
    Chaudhary V; Zhong Y; Parmar H; Tan X; Ramanujan RV
    Chemphyschem; 2018 Sep; 19(18):2370-2379. PubMed ID: 29878645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Synthesis of Magnetically Hard and Strong Rare Earth Metal Based Nanomagnets.
    Shen B; Yu C; Baker AA; McCall SK; Yu Y; Su D; Yin Z; Liu H; Li J; Sun S
    Angew Chem Int Ed Engl; 2019 Jan; 58(2):602-606. PubMed ID: 30414238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel microwave assisted chemical synthesis of Nd₂Fe₁₄B hard magnetic nanoparticles.
    Swaminathan V; Deheri PK; Bhame SD; Ramanujan RV
    Nanoscale; 2013 Apr; 5(7):2718-25. PubMed ID: 23426224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metastable cobalt nitride structures with high magnetic anisotropy for rare-earth free magnets.
    Zhao X; Ke L; Wang CZ; Ho KM
    Phys Chem Chem Phys; 2016 Nov; 18(46):31680-31690. PubMed ID: 27841387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Building nanocomposite magnets by coating a hard magnetic core with a soft magnetic shell.
    Liu F; Zhu J; Yang W; Dong Y; Hou Y; Zhang C; Yin H; Sun S
    Angew Chem Int Ed Engl; 2014 Feb; 53(8):2176-80. PubMed ID: 24453167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel Nd(2)Fe(14)B nanoflakes and nanoparticles for the development of high energy nanocomposite magnets.
    Akdogan NG; Hadjipanayis GC; Sellmyer DJ
    Nanotechnology; 2010 Jul; 21(29):295705. PubMed ID: 20601763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ XAFS study on the formation process of cobalt carbide by Fischer-Tropsch reaction.
    Liu Y; Wu D; Yu F; Yang R; Zhang H; Sun F; Zhong L; Jiang Z
    Phys Chem Chem Phys; 2019 May; 21(20):10791-10797. PubMed ID: 31086917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.