These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 25412739)

  • 1. Piecewise linear and Boolean models of chemical reaction networks.
    Veliz-Cuba A; Kumar A; Josić K
    Bull Math Biol; 2014 Dec; 76(12):2945-84. PubMed ID: 25412739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model reduction using piecewise-linear approximations preserves dynamic properties of the carbon starvation response in Escherichia coli.
    Ropers D; Baldazzi V; de Jong H
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):166-81. PubMed ID: 21071805
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle.
    Kosiuk I; Szmolyan P
    J Math Biol; 2016 Apr; 72(5):1337-68. PubMed ID: 26100376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparing different ODE modelling approaches for gene regulatory networks.
    Polynikis A; Hogan SJ; di Bernardo M
    J Theor Biol; 2009 Dec; 261(4):511-30. PubMed ID: 19665034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computing weakly reversible linearly conjugate chemical reaction networks with minimal deficiency.
    Johnston MD; Siegel D; Szederkényi G
    Math Biosci; 2013 Jan; 241(1):88-98. PubMed ID: 23079395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-dependent product-form Poisson distributions for reaction networks with higher order complexes.
    Anderson DF; Schnoerr D; Yuan C
    J Math Biol; 2020 May; 80(6):1919-1951. PubMed ID: 32211950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An analysis of the class of gene regulatory functions implied by a biochemical model.
    Grefenstette J; Kim S; Kauffman S
    Biosystems; 2006 May; 84(2):81-90. PubMed ID: 16384633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Geometric Method for Model Reduction of Biochemical Networks with Polynomial Rate Functions.
    Samal SS; Grigoriev D; Fröhlich H; Weber A; Radulescu O
    Bull Math Biol; 2015 Dec; 77(12):2180-211. PubMed ID: 26597097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical Systems with Limit Cycles.
    Erban R; Kang HW
    Bull Math Biol; 2023 Jul; 85(8):76. PubMed ID: 37402077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model reduction of the intracellular-signaling subsystem of apoptosis.
    Bykov V; Gol'dshtein V
    Math Biosci; 2016 May; 275():39-50. PubMed ID: 26880618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sharper graph-theoretical conditions for the stabilization of complex reaction networks.
    Knight D; Shinar G; Feinberg M
    Math Biosci; 2015 Apr; 262():10-27. PubMed ID: 25600138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Independent Decompositions of Chemical Reaction Networks.
    Hernandez BS; De la Cruz RJL
    Bull Math Biol; 2021 May; 83(7):76. PubMed ID: 34008093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical formalisms based on approximated kinetic representations for modeling genetic and metabolic pathways.
    Alves R; Vilaprinyo E; Hernádez-Bermejo B; Sorribas A
    Biotechnol Genet Eng Rev; 2008; 25():1-40. PubMed ID: 21412348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the dynamic behavior of biochemical regulatory networks.
    Tyson JJ; Laomettachit T; Kraikivski P
    J Theor Biol; 2019 Feb; 462():514-527. PubMed ID: 30502409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multistationarity and Bistability for Fewnomial Chemical Reaction Networks.
    Feliu E; Helmer M
    Bull Math Biol; 2019 Apr; 81(4):1089-1121. PubMed ID: 30564990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. When is approximation by Gaussian networks necessarily a linear process?
    Mhaskar HN
    Neural Netw; 2004 Sep; 17(7):989-1001. PubMed ID: 15312841
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boolean network analysis through the joint use of linear algebra and algebraic geometry.
    Menini L; Possieri C; Tornambè A
    J Theor Biol; 2019 Jul; 472():46-53. PubMed ID: 30991072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating parameters and hidden variables in non-linear state-space models based on ODEs for biological networks inference.
    Quach M; Brunel N; d'Alché-Buc F
    Bioinformatics; 2007 Dec; 23(23):3209-16. PubMed ID: 18042557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mean-field Boolean network model of a signal transduction network.
    Kochi N; Matache MT
    Biosystems; 2012; 108(1-3):14-27. PubMed ID: 22212351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of parameters in systems biology.
    Abdulla UG; Poteau R
    Math Biosci; 2018 Nov; 305():133-145. PubMed ID: 30217694
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.