These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 25412884)

  • 1. Real-time depth of anaesthesia assessment using strong analytical signal transform technique.
    Palendeng ME; Wen P; Li Y
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):723-30. PubMed ID: 25412884
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG under anesthesia--feature extraction with TESPAR.
    Moca VV; Scheller B; Mureşan RC; Daunderer M; Pipa G
    Comput Methods Programs Biomed; 2009 Sep; 95(3):191-202. PubMed ID: 19371961
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EEG artifacts reduction by multivariate empirical mode decomposition and multiscale entropy for monitoring depth of anaesthesia during surgery.
    Liu Q; Chen YF; Fan SZ; Abbod MF; Shieh JS
    Med Biol Eng Comput; 2017 Aug; 55(8):1435-1450. PubMed ID: 27995430
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational Depth of Anesthesia via Multiple Vital Signs Based on Artificial Neural Networks.
    Sadrawi M; Fan SZ; Abbod MF; Jen KK; Shieh JS
    Biomed Res Int; 2015; 2015():536863. PubMed ID: 26568957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying cortical activity during general anesthesia using wavelet analysis.
    Zikov T; Bibian S; Dumont GA; Huzmezan M; Ries CR
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):617-32. PubMed ID: 16602568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consciousness and depth of anesthesia assessment based on Bayesian analysis of EEG signals.
    Nguyen-Ky T; Wen PP; Li Y
    IEEE Trans Biomed Eng; 2013 Jun; 60(6):1488-98. PubMed ID: 23314762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the hypnotic depth of anaesthesia based on the EEG signal using combined wavelet transform, eigenvector and normalisation techniques.
    Nguyen-Ky T; Wen P; Li Y; Malan M
    Comput Biol Med; 2012 Jun; 42(6):680-91. PubMed ID: 22575174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EEG parameters and their combination as indicators of depth of anaesthesia.
    Jordan D; Schneider G; Hock A; Hensel T; Stockmanns G; Kochs EF
    Biomed Tech (Berl); 2006 Jul; 51(2):89-94. PubMed ID: 16915771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-Time Depth of Anaesthesia Assessment Based on Hybrid Statistical Features of EEG.
    Huang Y; Wen P; Song B; Li Y
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NeuMonD: a tool for the development of new indicators of anaesthetic effect.
    Stockmanns G; Ningler M; Omerovic A; Kochs EF; Schneider G
    Biomed Tech (Berl); 2007 Feb; 52(1):96-101. PubMed ID: 17313342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring and reflecting depth of anesthesia using wavelet and power spectral density.
    Nguyen-Ky T; Wen PP; Li Y; Gray R
    IEEE Trans Inf Technol Biomed; 2011 Jul; 15(4):630-9. PubMed ID: 21606041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance.
    Lee SH; Lim JS; Kim JK; Yang J; Lee Y
    Comput Methods Programs Biomed; 2014 Aug; 116(1):10-25. PubMed ID: 24837641
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auditory evoked potentials for the assessment of depth of anaesthesia: different configurations of artefact detection algorithms.
    Luecke D; Stockmanns G; Gallinat M; Kochs EF; Schneider G
    Biomed Tech (Berl); 2007 Feb; 52(1):90-5. PubMed ID: 17313341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Depth of anaesthesia assessment based on adult electroencephalograph beta frequency band.
    Li T; Wen P
    Australas Phys Eng Sci Med; 2016 Sep; 39(3):773-81. PubMed ID: 27323760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An autonomous real-time single-channel detection of absence seizures in WAG/Rij rats.
    Aghazadeh R; Shahabi P; Frounchi J; Sadighi M
    Gen Physiol Biophys; 2015 Jul; 34(3):285-91. PubMed ID: 26001287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EEG frequency progression during induction of anesthesia: from start of infusion to onset of burst suppression pattern.
    Kortelainen J; Koskinen M; Mustola S; Seppänen T
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1570-3. PubMed ID: 18002270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An automatic detector of drowsiness based on spectral analysis and wavelet decomposition of EEG records.
    Garces Correa A; Laciar Leber E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1405-8. PubMed ID: 21096343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of entropy and complexity measures for the assessment of depth of sedation.
    Ferenets R; Lipping T; Anier A; Jäntti V; Melto S; Hovilehto S
    IEEE Trans Biomed Eng; 2006 Jun; 53(6):1067-77. PubMed ID: 16761834
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-stationarity of EEG during wakefulness and anaesthesia: advantages of EEG permutation entropy monitoring.
    Kreuzer M; Kochs EF; Schneider G; Jordan D
    J Clin Monit Comput; 2014 Dec; 28(6):573-80. PubMed ID: 24442330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia.
    Li D; Li X; Liang Z; Voss LJ; Sleigh JW
    J Neural Eng; 2010 Aug; 7(4):046010. PubMed ID: 20581428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.