These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 25412886)

  • 1. Investigation of the robustness of adaptive neuro-fuzzy inference system for tracking moving tumors in external radiotherapy.
    Torshabi AE
    Australas Phys Eng Sci Med; 2014 Dec; 37(4):771-8. PubMed ID: 25412886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Synthetic Adaptive Neuro-Fuzzy Prediction Model for Tumor Motion Tracking in External Radiotherapy by Evaluating Various Data Clustering Algorithms.
    Ghorbanzadeh L; Torshabi AE; Nabipour JS; Arbatan MA
    Technol Cancer Res Treat; 2016 Apr; 15(2):334-47. PubMed ID: 25765021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting accuracy in real-time tumor tracking via external surrogates: a comparative study.
    Torshabi AE; Pella A; Riboldi M; Baroni G
    Technol Cancer Res Treat; 2010 Dec; 9(6):551-62. PubMed ID: 21070077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An adaptive fuzzy prediction model for real time tumor tracking in radiotherapy via external surrogates.
    Esmaili Torshabi A; Riboldi M; Imani Fooladi AA; Modarres Mosalla SM; Baroni G
    J Appl Clin Med Phys; 2013 Jan; 14(1):4008. PubMed ID: 23318386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Online monitoring and error detection of real-time tumor displacement prediction accuracy using control limits on respiratory surrogate statistics.
    Malinowski K; McAvoy TJ; George R; Dieterich S; D'Souza WD
    Med Phys; 2012 Apr; 39(4):2042-8. PubMed ID: 22482625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time tumor tracking with an artificial neural networks-based method: a feasibility study.
    Seregni M; Pella A; Riboldi M; Orecchia R; Cerveri P; Baroni G
    Phys Med; 2013 Jan; 29(1):48-59. PubMed ID: 22209110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluoroscopic tumor tracking for image-guided lung cancer radiotherapy.
    Lin T; Cerviño LI; Tang X; Vasconcelos N; Jiang SB
    Phys Med Biol; 2009 Feb; 54(4):981-92. PubMed ID: 19147898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Study on Stereoscopic X-ray Imaging Data Set on the Accuracy of Real-Time Tumor Tracking in External Beam Radiotherapy.
    Esmaili Torshabi A; Ghorbanzadeh L
    Technol Cancer Res Treat; 2017 Apr; 16(2):167-177. PubMed ID: 27037300
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An artificial neural network (ANN)-based lung-tumor motion predictor for intrafractional MR tumor tracking.
    Yun J; Mackenzie M; Rathee S; Robinson D; Fallone BG
    Med Phys; 2012 Jul; 39(7):4423-33. PubMed ID: 22830775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robustness of external/internal correlation models for real-time tumor tracking to breathing motion variations.
    Seregni M; Cerveri P; Riboldi M; Pella A; Baroni G
    Phys Med Biol; 2012 Nov; 57(21):7053-74. PubMed ID: 23053391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Respiratory motion prediction by using the adaptive neuro fuzzy inference system (ANFIS).
    Kakar M; Nyström H; Aarup LR; Nøttrup TJ; Olsen DR
    Phys Med Biol; 2005 Oct; 50(19):4721-8. PubMed ID: 16177500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional fuzzy adaptive sliding-mode control of a 2-DOF direct-drive robot arm.
    Efe MO
    IEEE Trans Syst Man Cybern B Cybern; 2008 Dec; 38(6):1561-70. PubMed ID: 19022726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the intra-fraction update efficiency of a correlation model used for internal motion estimation during real-time tumor tracking for SBRT patients: fast update or no update?
    Poels K; Depuydt T; Verellen D; Gevaert T; Dhont J; Duchateau M; Burghelea M; Boussaer M; Steenbeke F; Collen C; Engels B; Storme G; De Ridder M
    Radiother Oncol; 2014 Sep; 112(3):352-9. PubMed ID: 25443498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptive prediction of internal target motion using external marker motion: a technical study.
    Yan H; Yin FF; Zhu GP; Ajlouni M; Kim JH
    Phys Med Biol; 2006 Jan; 51(1):31-44. PubMed ID: 16357429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of AI-driven prediction models to realize real-time tumor tracking during radiotherapy.
    Zhou D; Nakamura M; Mukumoto N; Tanabe H; Iizuka Y; Yoshimura M; Kokubo M; Matsuo Y; Mizowaki T
    Radiat Oncol; 2022 Feb; 17(1):42. PubMed ID: 35197087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of the optimum location of external markers for patient setup accuracy enhancement at external beam radiotherapy.
    Miandoab PS; Torshabi AE; Nankali S
    J Appl Clin Med Phys; 2016 Nov; 17(6):32-43. PubMed ID: 27929479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of gantry-mounted x-ray-based real-time target tracking methods.
    Montanaro T; Nguyen DT; Keall PJ; Booth J; Caillet V; Eade T; Haddad C; Shieh CC
    Med Phys; 2018 Mar; 45(3):1222-1232. PubMed ID: 29363760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A transductive neuro-fuzzy controller: application to a drilling process.
    Gajate A; Haber RE; Vega PI; Alique JR
    IEEE Trans Neural Netw; 2010 Jul; 21(7):1158-67. PubMed ID: 20659865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of motion tracking in echocardiographic image sequences: influence of system geometry and point-spread function.
    Touil B; Basarab A; Delachartre P; Bernard O; Friboulet D
    Ultrasonics; 2010 Mar; 50(3):373-86. PubMed ID: 19837445
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SBRT targets that move with respiration.
    Dieterich S; Green O; Booth J
    Phys Med; 2018 Dec; 56():19-24. PubMed ID: 30527085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.