These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25413002)

  • 1. Motion-based, high-yielding, and fast separation of different charged organics in water.
    Xuan M; Lin X; Shao J; Dai L; He Q
    Chemphyschem; 2015 Jan; 16(1):147-51. PubMed ID: 25413002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic Polymer Multilayer Shell Motors for Separation of Organics.
    Lin Z; Wu Z; Lin X; He Q
    Chemistry; 2016 Jan; 22(5):1587-91. PubMed ID: 26632275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-step microfluidic fabrication of soft monodisperse polyelectrolyte microcapsules by interfacial complexation.
    Kaufman G; Boltyanskiy R; Nejati S; Thiam AR; Loewenberg M; Dufresne ER; Osuji CO
    Lab Chip; 2014 Sep; 14(18):3494-7. PubMed ID: 25025528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Microfluidic Fabrication of Polyelectrolyte Microcapsules in Aqueous Conditions for Protein Release.
    Zhang L; Cai LH; Lienemann PS; Rossow T; Polenz I; Vallmajo-Martin Q; Ehrbar M; Na H; Mooney DJ; Weitz DA
    Angew Chem Int Ed Engl; 2016 Oct; 55(43):13470-13474. PubMed ID: 27717141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties of polyelectrolyte-filled multilayer microcapsules studied by atomic force and confocal microscopy.
    Lebedeva OV; Kim BS; Vinogradova OI
    Langmuir; 2004 Nov; 20(24):10685-90. PubMed ID: 15544402
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iridium-catalyst-based autonomous bubble-propelled graphene micromotors with ultralow catalyst loading.
    Wang H; Sofer Z; Eng AY; Pumera M
    Chemistry; 2014 Nov; 20(46):14946-50. PubMed ID: 25293511
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Equilibrium distribution of permeants in polyelectrolyte microcapsules filled with negatively charged polyelectrolyte: the influence of ionic strength and solvent polarity.
    Tong W; Song H; Gao C; Möhwald H
    J Phys Chem B; 2006 Jul; 110(26):12905-9. PubMed ID: 16805590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Janus-micromotor-based on-off luminescence sensor for active TNT detection.
    Yuan Y; Gao C; Wang D; Zhou C; Zhu B; He Q
    Beilstein J Nanotechnol; 2019; 10():1324-1331. PubMed ID: 31293869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entrapment of a weak polyanion and H+/Na+ exchange in confined polyelectrolyte microcapsules.
    Halozan D; Déjugnat C; Brumen M; Sukhorukov GB
    J Chem Inf Model; 2005; 45(6):1589-92. PubMed ID: 16309258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Soft microcapsules with highly plastic shells formed by interfacial polyelectrolyte-nanoparticle complexation.
    Kaufman G; Nejati S; Sarfati R; Boltyanskiy R; Loewenberg M; Dufresne ER; Osuji CO
    Soft Matter; 2015 Oct; 11(38):7478-82. PubMed ID: 26169689
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autonomous movement of controllable assembled Janus capsule motors.
    Wu Y; Wu Z; Lin X; He Q; Li J
    ACS Nano; 2012 Dec; 6(12):10910-6. PubMed ID: 23153409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Light-Driven TiO2-Au Janus Micromotors.
    Dong R; Zhang Q; Gao W; Pei A; Ren B
    ACS Nano; 2016 Jan; 10(1):839-44. PubMed ID: 26592971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiropyran-Decorated SiO₂-Pt Janus Micromotor: Preparation and Light-Induced Dynamic Self-Assembly and Disassembly.
    Zhang Q; Dong R; Chang X; Ren B; Tong Z
    ACS Appl Mater Interfaces; 2015 Nov; 7(44):24585-91. PubMed ID: 26488455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 'microfluidic pinball' for on-chip generation of Layer-by-Layer polyelectrolyte microcapsules.
    Kantak C; Beyer S; Yobas L; Bansal T; Trau D
    Lab Chip; 2011 Mar; 11(6):1030-5. PubMed ID: 21218225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Labs-on-a-chip meet self-propelled micromotors.
    Maria-Hormigos R; Jurado-Sánchez B; Escarpa A
    Lab Chip; 2016 Jul; 16(13):2397-407. PubMed ID: 27250248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic Janus motors on microfluidic chip: deterministic motion for targeted cargo delivery.
    Baraban L; Makarov D; Streubel R; Mönch I; Grimm D; Sanchez S; Schmidt OG
    ACS Nano; 2012 Apr; 6(4):3383-9. PubMed ID: 22424213
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric hybrid silica nanomotors for capture and cargo transport: towards a novel motion-based DNA sensor.
    Simmchen J; Baeza A; Ruiz D; Esplandiu MJ; Vallet-Regí M
    Small; 2012 Jul; 8(13):2053-9. PubMed ID: 22511610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near infrared-modulated propulsion of catalytic Janus polymer multilayer capsule motors.
    Wu Y; Si T; Lin X; He Q
    Chem Commun (Camb); 2015 Jan; 51(3):511-4. PubMed ID: 25409875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adhesion of polyelectrolyte microcapsules through biotin-streptavidin specific interaction.
    Raichur AM; Vörös J; Textor M; Fery A
    Biomacromolecules; 2006 Aug; 7(8):2331-6. PubMed ID: 16903679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced Janus droplet templates.
    Zhang K; Ren Y; Jiang T; Jiang H
    Anal Chim Acta; 2021 Oct; 1182():338955. PubMed ID: 34602209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.