These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25413003)

  • 21. Effect of feed characteristics on the organic matter, nitrogen and phosphorus removal in an activated sludge system treating piggery slurry.
    González C; García PA; Muñoz R
    Water Sci Technol; 2009; 60(8):2145-52. PubMed ID: 19844061
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Feasibility of nitrification/denitrification in a sequencing batch biofilm reactor with liquid circulation applied to post-treatment.
    Andrade do Canto CS; Rodrigues JA; Ratusznei SM; Zaiat M; Foresti E
    Bioresour Technol; 2008 Feb; 99(3):644-54. PubMed ID: 17336516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment.
    Del Pozo R; Diez V
    Water Res; 2005 Mar; 39(6):1114-22. PubMed ID: 15766966
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept.
    Aiyuk S; Amoako J; Raskin L; van Haandel A; Verstraete W
    Water Res; 2004 Jul; 38(13):3031-42. PubMed ID: 15261541
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of permeable media rotating reactors used for pretreatment of wastewaters.
    Hassard F; Cartmell E; Biddle J; Stephenson T
    Water Sci Technol; 2014; 69(9):1926-31. PubMed ID: 24804669
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrogen dynamics and removal in a horizontal flow biofilm reactor for wastewater treatment.
    Clifford E; Nielsen M; Sørensen K; Rodgers M
    Water Res; 2010 Jul; 44(13):3819-28. PubMed ID: 20537672
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of slaughterhouse wastewater in a sequencing batch reactor: simulation vs experimental studies.
    Filali-Meknassi Y; Auriol M; Tyagi RD; Surampalli RY
    Environ Technol; 2004 Jan; 25(1):23-38. PubMed ID: 15027647
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen transfer and uptake, nutrient removal, and energy footprint of parallel full-scale IFAS and activated sludge processes.
    Rosso D; Lothman SE; Jeung MK; Pitt P; Gellner WJ; Stone AL; Howard D
    Water Res; 2011 Nov; 45(18):5987-96. PubMed ID: 21940032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic model of a granular sludge SBR: influences on nutrient removal.
    de Kreuk MK; Picioreanu C; Hosseini M; Xavier JB; van Loosdrecht MC
    Biotechnol Bioeng; 2007 Jul; 97(4):801-15. PubMed ID: 17177197
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of packing rates of cubic-shaped polyurethane foam carriers on the microbial community and the removal of organics and nitrogen in moving bed biofilm reactors.
    Feng Q; Wang Y; Wang T; Zheng H; Chu L; Zhang C; Chen H; Kong X; Xing XH
    Bioresour Technol; 2012 Aug; 117():201-7. PubMed ID: 22621807
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-strength nitrogenous wastewater treatment in biofilm and granule anammox processes.
    Kim I; Lee HH; Chung YC; Jung JY
    Water Sci Technol; 2009; 60(9):2365-71. PubMed ID: 19901468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Treatment of composite chemical wastewater by aerobic GAC-biofilm sequencing batch reactor (SBGR).
    Rao NC; Mohan SV; Muralikrishna P; Sarma PN
    J Hazard Mater; 2005 Sep; 124(1-3):59-67. PubMed ID: 16019144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined UASB reactor and DAF/BF/anoxic/aerobic process for the removal of high-concentration organic matter and nutrients from slurry-type swine waste.
    Kim BU; Won CH; Rim JM
    Water Sci Technol; 2004; 49(5-6):199-205. PubMed ID: 15137424
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Simultaneous nitrogen and phosphorous removal under low DO in a hybrid biological reactor].
    Wang JL; Wang SY; Peng YZ; Gao YQ; Sun ZR
    Huan Jing Ke Xue; 2008 Mar; 29(3):655-9. PubMed ID: 18649523
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous carbon and nitrogen removal from high strength domestic wastewater in an aerobic RBC biofilm.
    Gupta AB; Gupta SK
    Water Res; 2001 May; 35(7):1714-22. PubMed ID: 11329673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sequencing batch membrane biofilm reactor for simultaneous nitrogen and phosphorus removal: novel application of membrane-aerated biofilm.
    Terada A; Yamamoto T; Tsuneda S; Hirata A
    Biotechnol Bioeng; 2006 Jul; 94(4):730-9. PubMed ID: 16673420
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatment of nitrogen and phosphorus in highly concentrated effluent in SBR and SBBR processes.
    Pambrun V; Paul E; Spérandio M
    Water Sci Technol; 2004; 50(6):269-76. PubMed ID: 15537016
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of aeration and non-aeration time on simultaneous organic, nitrogen and phosphorus removal using an intermittent aeration membrane bioreactor.
    Ujang Z; Salim MR; Khor SL
    Water Sci Technol; 2002; 46(9):193-200. PubMed ID: 12448469
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dairy washwater treatment using a horizontal flow biofilm system.
    Rodgers M; de Paor D; Clifford E
    J Environ Manage; 2008 Jan; 86(1):114-20. PubMed ID: 17240522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nitrogen removal assessment through nitrification rates and media biofilm accumulation in an IFAS process demonstration study.
    Regmi P; Thomas W; Schafran G; Bott C; Rutherford B; Waltrip D
    Water Res; 2011 Dec; 45(20):6699-708. PubMed ID: 22040713
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.