These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 25413791)

  • 21. Real-time quantitative PCR assays for quantification of L1781 ACCase inhibitor resistance allele in leaf and seed pools of Lolium populations.
    Kaundun SS; Cleere SM; Stanger CP; Burbidge JM; Windass JD
    Pest Manag Sci; 2006 Nov; 62(11):1082-91. PubMed ID: 16953497
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular basis of multiple resistance to ACCase- and ALS-inhibiting herbicides in Alopecurus japonicus from China.
    Bi Y; Liu W; Guo W; Li L; Yuan G; Du L; Wang J
    Pestic Biochem Physiol; 2016 Jan; 126():22-7. PubMed ID: 26778430
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Resistance to ACCase-inhibiting herbicides in the weed Lolium multiflorum.
    Alarcón-Reverte R; Moss SR
    Commun Agric Appl Biol Sci; 2008; 73(4):899-902. PubMed ID: 19226841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resistance determination of the ACCase-inhibiting herbicide of clodinafop propargyl in Avena ludoviciana (Durieu), and study of their interaction using molecular docking and simulation.
    Akbarabadi A; Ismaili A; Kahrizi D; Nazarian Firouzabadi F
    Mol Biol Rep; 2019 Feb; 46(1):415-424. PubMed ID: 30448893
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resistance to aryloxyphenoxypropionate herbicides in Amazon sprangletop: Confirmation, control, and molecular basis of resistance.
    Tehranchian P; Norsworthy JK; Korres NE; McElroy S; Chen S; Scott RC
    Pestic Biochem Physiol; 2016 Oct; 133():79-84. PubMed ID: 27742365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular bases for resistance to acetyl-coenzyme A carboxylase inhibitor in Japanese foxtail (Alopecurus japonicus).
    Tang H; Li J; Dong L; Dong A; Lü B; Zhu X
    Pest Manag Sci; 2012 Sep; 68(9):1241-7. PubMed ID: 22461409
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cross-resistance mechanisms to ACCase-inhibiting herbicides in short-spike canarygrass (Phalaris brachystachys).
    Golmohammadzadeh S; Rojano-Delgado AM; Vázquez-García JG; Romano Y; Osuna MD; Gherekhloo J; De Prado R
    Plant Physiol Biochem; 2020 Jun; 151():681-688. PubMed ID: 32353674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular basis of resistance to ACCase-inhibiting herbicide cyhalofop-butyl in Chinese sprangletop (Leptochloa chinensis (L.) Nees) from China.
    Deng W; Cai J; Zhang J; Chen Y; Chen Y; Di Y; Yuan S
    Pestic Biochem Physiol; 2019 Jul; 158():143-148. PubMed ID: 31378350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Choosing the best cropping systems to target pleiotropic effects when managing single-gene herbicide resistance in grass weeds. A blackgrass simulation study.
    Colbach N; Chauvel B; Darmency H; Délye C; Le Corre V
    Pest Manag Sci; 2016 Oct; 72(10):1910-25. PubMed ID: 26751723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resistance to herbicides caused by single amino acid mutations in acetyl-CoA carboxylase in resistant populations of grassy weeds.
    Jang S; Marjanovic J; Gornicki P
    New Phytol; 2013 Mar; 197(4):1110-1116. PubMed ID: 23301879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Role of a novel I1781T mutation and other mechanisms in conferring resistance to acetyl-CoA carboxylase inhibiting herbicides in a black-grass population.
    Kaundun SS; Hutchings SJ; Dale RP; McIndoe E
    PLoS One; 2013; 8(7):e69568. PubMed ID: 23936046
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nucleotide variability at the acetyl coenzyme A carboxylase gene and the signature of herbicide selection in the grass weed Alopecurus myosuroides (Huds.).
    Délye C; Straub C; Michel S; Le Corre V
    Mol Biol Evol; 2004 May; 21(5):884-92. PubMed ID: 15014166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular basis of ALS- and/or ACCase-inhibitor resistance in shortawn foxtail (Alopecurus aequalis Sobol.).
    Xia W; Pan L; Li J; Wang Q; Feng Y; Dong L
    Pestic Biochem Physiol; 2015 Jul; 122():76-80. PubMed ID: 26071810
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global perspective of herbicide-resistant weeds.
    Heap I
    Pest Manag Sci; 2014 Sep; 70(9):1306-15. PubMed ID: 24302673
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ACCase mutations in Avena sterilis populations and their impact on plant fitness.
    Papapanagiotou AP; Paresidou MI; Kaloumenos NS; Eleftherohorinos IG
    Pestic Biochem Physiol; 2015 Sep; 123():40-8. PubMed ID: 26267051
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synonymous mutation gene design to overexpress ACCase in creeping bentgrass to obtain resistance to ACCase-inhibiting herbicides.
    Heckart DL; Schwartz BM; Raymer PL; Parrott WA
    Transgenic Res; 2016 Aug; 25(4):465-76. PubMed ID: 27116460
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance of American sloughgrass (Bechmannia syzigachne) populations to ACCase-inhibiting herbicides involves three different target site mutations from China.
    Tang W; Zhou F; Zhang Y; Chen J
    Pestic Biochem Physiol; 2015 Oct; 124():93-6. PubMed ID: 26453236
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isolation and expression of genes for acetolactate synthase and acetyl-CoA carboxylase in Echinochloa phyllopogon, a polyploid weed species.
    Iwakami S; Uchino A; Watanabe H; Yamasue Y; Inamura T
    Pest Manag Sci; 2012 Jul; 68(7):1098-106. PubMed ID: 22473865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Broad resistance to ACCase inhibiting herbicides in a ryegrass population is due only to a cysteine to arginine mutation in the target enzyme.
    Kaundun SS; Hutchings SJ; Dale RP; McIndoe E
    PLoS One; 2012; 7(6):e39759. PubMed ID: 22768118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Resistance to post-emergent herbicides is becoming common for grass weeds on New Zealand wheat and barley farms.
    Buddenhagen CE; James TK; Ngow Z; Hackell DL; Rolston MP; Chynoweth RJ; Gunnarsson M; Li F; Harrington KC; Ghanizadeh H
    PLoS One; 2021; 16(10):e0258685. PubMed ID: 34648605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.