BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 25413810)

  • 1. Comparison of the migration behavior of nanoparticles based on polyethylene glycol and silica using micellar electrokinetic chromatography.
    Kato M; Sasaki M; Ueyama Y; Koga A; Sano A; Higashi T; Santa T
    J Sep Sci; 2015 Feb; 38(3):468-74. PubMed ID: 25413810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity.
    Lin YS; Haynes CL
    J Am Chem Soc; 2010 Apr; 132(13):4834-42. PubMed ID: 20230032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Depletion-mediated potentials and phase behavior for micelles, macromolecules, nanoparticles, and hydrogel particles.
    Edwards TD; Bevan MA
    Langmuir; 2012 Oct; 28(39):13816-23. PubMed ID: 22950666
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concomitant adsorption of poly(ethylene oxide)-b-poly(epsilon-caprolactone) copolymers and sodium dodecyl sulfate at the silica-water interface.
    Vangeyte P; Leyh B; De Clercq C; Auvray L; Misselyn-Bauduin AM; Jérôme R
    Langmuir; 2005 Aug; 21(17):7710-6. PubMed ID: 16089373
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micelle to solvent stacking of organic cations in micellar electrokinetic chromatography with sodium dodecyl sulfate.
    Quirino JP; Aranas AT
    J Chromatogr A; 2011 Oct; 1218(41):7377-83. PubMed ID: 21903217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid and mild purification method for nanoparticles from a dispersed solution using a monolithic silica disk.
    Itoh N; Santa T; Kato M
    J Chromatogr A; 2015 Jul; 1404():141-5. PubMed ID: 26058950
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of polymer segment-particle surface interactions in controlling nanoparticle dispersions in concentrated polymer solutions.
    Kim SY; Zukoski CF
    Langmuir; 2011 Sep; 27(17):10455-63. PubMed ID: 21766806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room-temperature preparation and characterization of poly (ethylene glycol)-coated silica nanoparticles for biomedical applications.
    Xu H; Yan F; Monson EE; Kopelman R
    J Biomed Mater Res A; 2003 Sep; 66(4):870-9. PubMed ID: 12926040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prednisolone multicomponent nanoparticle preparation by aerosol solvent extraction system.
    Moribe K; Fukino M; Tozuka Y; Higashi K; Yamamoto K
    Int J Pharm; 2009 Oct; 380(1-2):201-5. PubMed ID: 19576974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stacking and separation of fluorescent derivatives of amino acids by micellar electrokinetic chromatography in the presence of poly(ethylene oxide).
    Chiu TC; Chang HT
    J Chromatogr A; 2007 Mar; 1146(1):118-24. PubMed ID: 17300792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: effects of particle size and PEGylation.
    He Q; Zhang Z; Gao F; Li Y; Shi J
    Small; 2011 Jan; 7(2):271-80. PubMed ID: 21213393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capillary zone electrophoresis and micellar electrokinetic chromatography of solution of polyaniline particles.
    Krivánková L; Pantucková P; Bocek P
    Electrophoresis; 2000 Feb; 21(3):627-32. PubMed ID: 10726769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed separation of proteins by microchip electrophoresis using a polyethylene glycol-coated plastic chip with a sodium dodecyl sulfate-linear polyacrylamide solution.
    Nagata H; Tabuchi M; Hirano K; Baba Y
    Electrophoresis; 2005 Jul; 26(14):2687-91. PubMed ID: 15937980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-relaxivity and luminescent silica nanoparticles as multimodal agents for molecular imaging.
    Lipani E; Laurent S; Surin M; Vander Elst L; Leclère P; Muller RN
    Langmuir; 2013 Mar; 29(10):3419-27. PubMed ID: 23383648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An effect of polyethylene glycol 8000 on protein mobility in sodium dodecyl sulfate-polyacrylamide gel electrophoresis and a method for eliminating this effect.
    Odom OW; Kudlicki W; Kramer G; Hardesty B
    Anal Biochem; 1997 Feb; 245(2):249-52. PubMed ID: 9056221
    [No Abstract]   [Full Text] [Related]  

  • 16. Electrophoresis of polyethylene glycols and related materials as sodium dodecyl sulfate complexes.
    Zimmerman SB; Murphy LD
    Anal Biochem; 1996 Feb; 234(2):190-3. PubMed ID: 8714597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and interaction in the polymer-dependent reentrant phase behavior of a charged nanoparticle solution.
    Kumar S; Ray D; Aswal VK; Kohlbrecher J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042316. PubMed ID: 25375503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions of hydroxy-s-triazines with sodium dodecyl sulfate-micelles investigated by micellar capillary electrophoresis.
    Freitag D; Schmitt-Kopplin P; Simon R; Kaune A; Kettrup A
    Electrophoresis; 1999 Jun; 20(7):1568-77. PubMed ID: 10424482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative study of capillary zone electrophoresis and micellar electrokinetic capillary chromatography for the separation of naphthalenedisulfonate isomers.
    Cugat MJ; Borrull F; Calull M
    Analyst; 2000 Dec; 125(12):2236-40. PubMed ID: 11219058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A nano-bio interfacial protein corona on silica nanoparticle.
    Zhang H; Peng J; Li X; Liu S; Hu Z; Xu G; Wu R
    Colloids Surf B Biointerfaces; 2018 Jul; 167():220-228. PubMed ID: 29656205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.