These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25414034)

  • 1. Pseudosolubilized n-alkanes analysis and optimization of biosurfactants production by Pseudomonas sp. DG17.
    Hua F; Wang HQ; Zhao YC; Yang Y
    Environ Sci Pollut Res Int; 2015 May; 22(9):6660-9. PubMed ID: 25414034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uptake modes of octadecane by Pseudomonas sp. DG17 and synthesis of biosurfactant.
    Hua F; Wang H
    J Appl Microbiol; 2012 Jan; 112(1):25-37. PubMed ID: 22008053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of rhamnolipid production by biodegrading bacterial isolates using Plackett-Burman design.
    Hassan M; Essam T; Yassin AS; Salama A
    Int J Biol Macromol; 2016 Jan; 82():573-9. PubMed ID: 26432373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Trans-membrane transport of n-octadecane by Pseudomonas sp. DG17.
    Hua F; Wang HQ; Li Y; Zhao YC
    J Microbiol; 2013 Dec; 51(6):791-9. PubMed ID: 24385357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pseudomonas sp. BUP6, a novel isolate from Malabari goat produces an efficient rhamnolipid type biosurfactant.
    Priji P; Sajith S; Unni KN; Anderson RC; Benjamin S
    J Basic Microbiol; 2017 Jan; 57(1):21-33. PubMed ID: 27400277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-active properties of rhamnolipids from Pseudomonas aeruginosa GS3.
    Patel RM; Desai AJ
    J Basic Microbiol; 1997; 37(4):281-6. PubMed ID: 9323868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosurfactant produced by novel Pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons.
    Xia W; Du Z; Cui Q; Dong H; Wang F; He P; Tang Y
    J Hazard Mater; 2014 Jul; 276():489-98. PubMed ID: 24929788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced biodegradation of alkane hydrocarbons and crude oil by mixed strains and bacterial community analysis.
    Chen Y; Li C; Zhou Z; Wen J; You X; Mao Y; Lu C; Huo G; Jia X
    Appl Biochem Biotechnol; 2014 Apr; 172(7):3433-47. PubMed ID: 24532465
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of rhamnolipids on degradation of anthracene by two newly isolated strains, Sphingomonas sp. 12A and Pseudomonas sp. 12B.
    Cui CZ; Zeng C; Wan X; Chen D; Zhang JY; Shen P
    J Microbiol Biotechnol; 2008 Jan; 18(1):63-6. PubMed ID: 18239418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation of marine surface floating crude oil in a large-scale field simulated experiment.
    Bao M; Sun P; Yang X; Wang X; Wang L; Cao L; Li F
    Environ Sci Process Impacts; 2014 Aug; 16(8):1948-56. PubMed ID: 24931448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous degradation of n-hexane and production of biosurfactants by Pseudomonas sp. strain NEE2 isolated from oil-contaminated soils.
    He S; Ni Y; Lu L; Chai Q; Yu T; Shen Z; Yang C
    Chemosphere; 2020 Mar; 242():125237. PubMed ID: 31896179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced octadecane dispersion and biodegradation by a Pseudomonas rhamnolipid surfactant (biosurfactant).
    Zhang Y; Miller RM
    Appl Environ Microbiol; 1992 Oct; 58(10):3276-82. PubMed ID: 1444363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of carbon and nitrogen sources on rhamnolipid biosurfactant production by Pseudomonas nitroreducens isolated from soil.
    Onwosi CO; Odibo FJ
    World J Microbiol Biotechnol; 2012 Mar; 28(3):937-42. PubMed ID: 22805814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of critical nutritional parameters and their significance in the production of rhamnolipid biosurfactants from Pseudomonas aeruginosa BS-161R.
    Kumar CG; Mamidyala SK; Sujitha P; Muluka H; Akkenapally S
    Biotechnol Prog; 2012; 28(6):1507-16. PubMed ID: 22961871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of Pseudomonas aeruginosa strain SJTD-2 for degrading long-chain n-alkanes and crude oil.
    Xu J; Liu H; Liu J; Liang R
    Wei Sheng Wu Xue Bao; 2015 Jun; 55(6):755-63. PubMed ID: 26563001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of biosurfactants produced by the oil-degrading bacterium Rhodococcus erythropolis S67 at low temperature.
    Luong TM; Ponamoreva ON; Nechaeva IA; Petrikov KV; Delegan YA; Surin AK; Linklater D; Filonov AE
    World J Microbiol Biotechnol; 2018 Jan; 34(2):20. PubMed ID: 29302805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factors influencing the trans-membrane transport of
    Hua F; Wang HQ; Zhao YC
    Biotechnol Biotechnol Equip; 2014 May; 28(3):463-470. PubMed ID: 26740764
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of biosurfactant on the diesel oil remediation in soil-water system.
    Li YY; Zheng XL; Li B
    J Environ Sci (China); 2006; 18(3):587-90. PubMed ID: 17294662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation of biosurfactant producers, optimization and properties of biosurfactant produced by Acinetobacter sp. from petroleum-contaminated soil.
    Chen J; Huang PT; Zhang KY; Ding FR
    J Appl Microbiol; 2012 Apr; 112(4):660-71. PubMed ID: 22268814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmentally friendly rhamnolipid production for petroleum remediation.
    Dobler L; Ferraz HC; Araujo de Castilho LV; Sangenito LS; Pasqualino IP; Souza Dos Santos AL; Neves BC; Oliveira RR; Guimarães Freire DM; Almeida RV
    Chemosphere; 2020 Aug; 252():126349. PubMed ID: 32443257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.