BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25414246)

  • 1. Sulforhodamine B interacts with albumin to lower surface tension and protect against ventilation injury of flooded alveoli.
    Kharge AB; Wu Y; Perlman CE
    J Appl Physiol (1985); 2015 Feb; 118(3):355-64. PubMed ID: 25414246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated deflation promotes homogeneous airspace liquid distribution in the edematous lung.
    Wu Y; Nguyen TL; Perlman CE
    J Appl Physiol (1985); 2017 Apr; 122(4):739-751. PubMed ID: 27979983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lung ventilation injures areas with discrete alveolar flooding, in a surface tension-dependent fashion.
    Wu Y; Kharge AB; Perlman CE
    J Appl Physiol (1985); 2014 Oct; 117(7):788-96. PubMed ID: 25080924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravenous sulforhodamine B reduces alveolar surface tension, improves oxygenation, and reduces ventilation injury in a respiratory distress model.
    Wu Y; Nguyen TL; Perlman CE
    J Appl Physiol (1985); 2021 May; 130(5):1305-1316. PubMed ID: 33211596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sulforhodamine B and exogenous surfactant effects on alveolar surface tension under acute respiratory distress syndrome conditions.
    Nguyen TL; Perlman CE
    J Appl Physiol (1985); 2020 Dec; 129(6):1505-1513. PubMed ID: 32969780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface tension in situ in flooded alveolus unaltered by albumin.
    Kharge AB; Wu Y; Perlman CE
    J Appl Physiol (1985); 2014 Sep; 117(5):440-51. PubMed ID: 24970853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracheal acid or surfactant instillation raises alveolar surface tension.
    Nguyen TL; Perlman CE
    J Appl Physiol (1985); 2018 Nov; 125(5):1357-1367. PubMed ID: 29771610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inositol-trisphosphate reduces alveolar apoptosis and pulmonary edema in neonatal lung injury.
    Preuss S; Stadelmann S; Omam FD; Scheiermann J; Winoto-Morbach S; von Bismarck P; Knerlich-Lukoschus F; Lex D; Adam-Klages S; Wesch D; Held-Feindt J; Uhlig S; Schütze S; Krause MF
    Am J Respir Cell Mol Biol; 2012 Aug; 47(2):158-69. PubMed ID: 22403805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partial liquid ventilation with perfluorocarbon in acute lung injury: light and transmission electron microscopy studies.
    van Eeden SF; Klut ME; Leal MA; Alexander J; Zonis Z; Skippen P
    Am J Respir Cell Mol Biol; 2000 Apr; 22(4):441-50. PubMed ID: 10745025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alveolar epithelial fluid clearance mechanisms are intact after moderate hyperoxic lung injury in rats.
    Garat C; Meignan M; Matthay MA; Luo DF; Jayr C
    Chest; 1997 May; 111(5):1381-8. PubMed ID: 9149598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micromechanics of alveolar edema.
    Perlman CE; Lederer DJ; Bhattacharya J
    Am J Respir Cell Mol Biol; 2011 Jan; 44(1):34-9. PubMed ID: 20118224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High tidal volume ventilation induces NOS2 and impairs cAMP- dependent air space fluid clearance.
    Frank JA; Pittet JF; Lee H; Godzich M; Matthay MA
    Am J Physiol Lung Cell Mol Physiol; 2003 May; 284(5):L791-8. PubMed ID: 12562562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absence of alveolar tears in rat lungs with significant alveolar instability.
    Pavone LA; Dirocco JD; Carney DE; Gatto LA; McBride NT; Norton JA; Hession RM; Boubert F; Hojnowski KA; Lafollette RL; Dries DJ; Nieman GF
    Respiration; 2007; 74(4):439-46. PubMed ID: 17396025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alveolar inflation during generation of a quasi-static pressure/volume curve in the acutely injured lung.
    Schiller HJ; Steinberg J; Halter J; McCann U; DaSilva M; Gatto LA; Carney D; Nieman G
    Crit Care Med; 2003 Apr; 31(4):1126-33. PubMed ID: 12682483
    [TBL] [Abstract][Full Text] [Related]  

  • 15. New options for the ventilatory management of acute lung injury.
    Marini JJ
    New Horiz; 1993 Nov; 1(4):489-503. PubMed ID: 8087570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Resolution of pulmonary edema with variable mechanical ventilation in a porcine model of acute lung injury.
    Graham MR; Gulati H; Kha L; Girling LG; Goertzen A; Mutch WA
    Can J Anaesth; 2011 Aug; 58(8):740-50. PubMed ID: 21643873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic alveolar mechanics in four models of lung injury.
    DiRocco JD; Pavone LA; Carney DE; Lutz CJ; Gatto LA; Landas SK; Nieman GF
    Intensive Care Med; 2006 Jan; 32(1):140-8. PubMed ID: 16391949
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome.
    Christley S; Emr B; Ghosh A; Satalin J; Gatto L; Vodovotz Y; Nieman GF; An G
    Phys Biol; 2013 Jun; 10(3):036008. PubMed ID: 23598859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro and in vivo intrapulmonary distribution of fluorescently labeled surfactant.
    Diemel RV; Walch M; Haagsman HP; Putz G
    Crit Care Med; 2002 May; 30(5):1083-90. PubMed ID: 12006806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time visualization of partial liquid ventilation in a model of acute lung injury.
    Endo S; Sohara Y; Murayama F; Yamaguchi T; Hasegawa T; Kanai Y
    Surgery; 2003 Feb; 133(2):207-15. PubMed ID: 12605182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.