BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 25414570)

  • 21. SpectralNET--an application for spectral graph analysis and visualization.
    Forman JJ; Clemons PA; Schreiber SL; Haggarty SJ
    BMC Bioinformatics; 2005 Oct; 6():260. PubMed ID: 16236170
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Using sequence signatures and kink-turn motifs in knowledge-based statistical potentials for RNA structure prediction.
    Bayrak CS; Kim N; Schlick T
    Nucleic Acids Res; 2017 May; 45(9):5414-5422. PubMed ID: 28158755
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graph-based flow modeling approach adapted to multiscale discrete-fracture-network models.
    Doolaeghe D; Davy P; Hyman JD; Darcel C
    Phys Rev E; 2020 Nov; 102(5-1):053312. PubMed ID: 33327073
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast construction of assembly trees for molecular graphs.
    Artemova S; Grudinin S; Redon S
    J Comput Chem; 2011 Jun; 32(8):1589-98. PubMed ID: 21328401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Classifying multigraph models of secondary RNA structure using graph-theoretic descriptors.
    Knisley D; Knisley J; Ross C; Rockney A
    ISRN Bioinform; 2012; 2012():157135. PubMed ID: 25969746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PseudoViewer: automatic visualization of RNA pseudoknots.
    Han K; Lee Y; Kim W
    Bioinformatics; 2002; 18 Suppl 1():S321-8. PubMed ID: 12169562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RNA pseudoknot prediction in energy-based models.
    Lyngsø RB; Pedersen CN
    J Comput Biol; 2000; 7(3-4):409-27. PubMed ID: 11108471
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modular RNA architecture revealed by computational analysis of existing pseudoknots and ribosomal RNAs.
    Pasquali S; Gan HH; Schlick T
    Nucleic Acids Res; 2005; 33(4):1384-98. PubMed ID: 15745998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. On topological indices for small RNA graphs.
    Churkin A; Gabdank I; Barash D
    Comput Biol Chem; 2012 Dec; 41():35-40. PubMed ID: 23147564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. jViz.RNA 4.0-Visualizing pseudoknots and RNA editing employing compressed tree graphs.
    Shabash B; Wiese KC
    PLoS One; 2019; 14(5):e0210281. PubMed ID: 31059508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization and comparison of Escherichia coli transfer RNAs by graph theory based on secondary structure.
    Bermúdez CI; Daza EE; Andrade E
    J Theor Biol; 1999 Mar; 197(2):193-205. PubMed ID: 10074393
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spectral decomposition for the search and analysis of RNA secondary structure.
    Barash D
    J Comput Biol; 2004; 11(6):1169-74. PubMed ID: 15662204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Discovery of Influenza A Virus Sequence Pairs and Their Combinations for Simultaneous Heterosubtypic Targeting that Hedge against Antiviral Resistance.
    Wee KB; Lee RT; Lin J; Pramono ZA; Maurer-Stroh S
    PLoS Comput Biol; 2016 Jan; 12(1):e1004663. PubMed ID: 26771381
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Matched signal detection on graphs: Theory and application to brain imaging data classification.
    Hu C; Sepulcre J; Johnson KA; Fakhri GE; Lu YM; Li Q
    Neuroimage; 2016 Jan; 125():587-600. PubMed ID: 26481679
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A computational proposal for designing structured RNA pools for in vitro selection of RNAs.
    Kim N; Gan HH; Schlick T
    RNA; 2007 Apr; 13(4):478-92. PubMed ID: 17322501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A graph-theory algorithm for rapid protein side-chain prediction.
    Canutescu AA; Shelenkov AA; Dunbrack RL
    Protein Sci; 2003 Sep; 12(9):2001-14. PubMed ID: 12930999
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the Fiedler vectors of graphs that arise from trees by Schur complementation of the Laplacian.
    Stone EA; Griffing AR
    Linear Algebra Appl; 2009 Oct; 431(10):1869-1880. PubMed ID: 23472045
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RAG-3D: a search tool for RNA 3D substructures.
    Zahran M; Sevim Bayrak C; Elmetwaly S; Schlick T
    Nucleic Acids Res; 2015 Oct; 43(19):9474-88. PubMed ID: 26304547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical graphs, molecular matrices and topological indices in chemoinformatics and quantitative structure-activity relationships.
    Ivanciuc O
    Curr Comput Aided Drug Des; 2013 Jun; 9(2):153-63. PubMed ID: 23701000
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SimRNA: a coarse-grained method for RNA folding simulations and 3D structure prediction.
    Boniecki MJ; Lach G; Dawson WK; Tomala K; Lukasz P; Soltysinski T; Rother KM; Bujnicki JM
    Nucleic Acids Res; 2016 Apr; 44(7):e63. PubMed ID: 26687716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.