These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 25414974)
1. Greenlighting photoelectrochemical oxidation of water by iron oxide. Kim DW; Riha SC; DeMarco EJ; Martinson AB; Farha OK; Hupp JT ACS Nano; 2014 Dec; 8(12):12199-207. PubMed ID: 25414974 [TBL] [Abstract][Full Text] [Related]
2. Better Together: Ilmenite/Hematite Junctions for Photoelectrochemical Water Oxidation. Berardi S; Kopula Kesavan J; Amidani L; Meloni EM; Marelli M; Boscherini F; Caramori S; Pasquini L ACS Appl Mater Interfaces; 2020 Oct; 12(42):47435-47446. PubMed ID: 32986954 [TBL] [Abstract][Full Text] [Related]
3. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst. Seabold JA; Choi KS J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of CuFe Hussain S; Hussain S; Waleed A; Tavakoli MM; Wang Z; Yang S; Fan Z; Nadeem MA ACS Appl Mater Interfaces; 2016 Dec; 8(51):35315-35322. PubMed ID: 28027650 [TBL] [Abstract][Full Text] [Related]
5. Improving Hematite's Solar Water Splitting Efficiency by Incorporating Rare-Earth Upconversion Nanomaterials. Zhang M; Lin Y; Mullen TJ; Lin WF; Sun LD; Yan CH; Patten TE; Wang D; Liu GY J Phys Chem Lett; 2012 Nov; 3(21):3188-92. PubMed ID: 26296027 [TBL] [Abstract][Full Text] [Related]
6. Photoelectrochemical and impedance spectroscopic investigation of water oxidation with "Co-Pi"-coated hematite electrodes. Klahr B; Gimenez S; Fabregat-Santiago F; Bisquert J; Hamann TW J Am Chem Soc; 2012 Oct; 134(40):16693-700. PubMed ID: 22950478 [TBL] [Abstract][Full Text] [Related]
7. Nanotextured Spikes of α-Fe Hussain S; Tavakoli MM; Waleed A; Virk US; Yang S; Waseem A; Fan Z; Nadeem MA Langmuir; 2018 Mar; 34(12):3555-3564. PubMed ID: 29537275 [TBL] [Abstract][Full Text] [Related]
8. Antimony-doped tin oxide nanorods as a transparent conducting electrode for enhancing photoelectrochemical oxidation of water by hematite. Sun Y; Chemelewski WD; Berglund SP; Li C; He H; Shi G; Mullins CB ACS Appl Mater Interfaces; 2014 Apr; 6(8):5494-9. PubMed ID: 24665964 [TBL] [Abstract][Full Text] [Related]
9. Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. Hu YS; Kleiman-Shwarsctein A; Stucky GD; McFarland EW Chem Commun (Camb); 2009 May; (19):2652-4. PubMed ID: 19532910 [TBL] [Abstract][Full Text] [Related]
10. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy. Pei GX; Wijten JHJ; Weckhuysen BM Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131 [TBL] [Abstract][Full Text] [Related]
11. Ultrathin planar hematite film for solar photoelectrochemical water splitting. Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797 [TBL] [Abstract][Full Text] [Related]
12. Plasma-Induced Oxygen Vacancies in Ultrathin Hematite Nanoflakes Promoting Photoelectrochemical Water Oxidation. Zhu C; Li C; Zheng M; Delaunay JJ ACS Appl Mater Interfaces; 2015 Oct; 7(40):22355-63. PubMed ID: 26400020 [TBL] [Abstract][Full Text] [Related]
13. Water oxidation on pure and doped hematite (0001) surfaces: prediction of Co and Ni as effective dopants for electrocatalysis. Liao P; Keith JA; Carter EA J Am Chem Soc; 2012 Aug; 134(32):13296-309. PubMed ID: 22788792 [TBL] [Abstract][Full Text] [Related]
14. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes. Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963 [TBL] [Abstract][Full Text] [Related]
15. Water oxidation at hematite photoelectrodes: the role of surface states. Klahr B; Gimenez S; Fabregat-Santiago F; Hamann T; Bisquert J J Am Chem Soc; 2012 Mar; 134(9):4294-302. PubMed ID: 22303953 [TBL] [Abstract][Full Text] [Related]
16. Solvothermal-Etching Process Induced Ti-Doped Fe2O3 Thin Film with Low Turn-On Voltage for Water Splitting. Ding D; Dong B; Liang J; Zhou H; Pang Y; Ding S ACS Appl Mater Interfaces; 2016 Sep; 8(37):24573-8. PubMed ID: 27557165 [TBL] [Abstract][Full Text] [Related]
17. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation. Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640 [TBL] [Abstract][Full Text] [Related]
18. Gap-plasmon enhanced water splitting with ultrathin hematite films: the role of plasmonic-based light trapping and hot electrons. Dutta A; Naldoni A; Malara F; Govorov AO; Shalaev VM; Boltasseva A Faraday Discuss; 2019 May; 214():283-295. PubMed ID: 30821797 [TBL] [Abstract][Full Text] [Related]
19. Metal Oxide/(oxy)hydroxide Overlayers as Hole Collectors and Oxygen-Evolution Catalysts on Water-Splitting Photoanodes. Laskowski FAL; Nellist MR; Qiu J; Boettcher SW J Am Chem Soc; 2019 Jan; 141(4):1394-1405. PubMed ID: 30537811 [TBL] [Abstract][Full Text] [Related]