These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 25415468)

  • 41. Development of yeast strains for the efficient utilisation of starch: evaluation of constructs that express alpha-amylase and glucoamylase separately or as bifunctional fusion proteins.
    de Moraes LM; Astolfi-Filho S; Oliver SG
    Appl Microbiol Biotechnol; 1995 Nov; 43(6):1067-76. PubMed ID: 8590658
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis of 2-deoxy-glucooligosaccharides through condensation of 2-deoxy-D-glucose by glucoamylase and alpha-glucosidase.
    Nakano H; Hamayasu K; Fujita K; Hara K; Ohi M; Yoshizumi H; Kitahata S
    Biosci Biotechnol Biochem; 1995 Sep; 59(9):1732-6. PubMed ID: 8520115
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of a neutral and thermostable glucoamylase from the thermophilic mold Thermomucor indicae-seudaticae: activity, stability, and structural correlation.
    Kumar P; Islam A; Ahmad F; Satyanarayana T
    Appl Biochem Biotechnol; 2010 Mar; 160(3):879-90. PubMed ID: 19484200
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Consolidated bioprocessing of raw starch with Saccharomyces cerevisiae strains expressing fungal alpha-amylase and glucoamylase combinations.
    Sakwa L; Cripwell RA; Rose SH; Viljoen-Bloom M
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 30085077
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Gene cloning and expression of a new acidic family 7 endo-beta-1,3-1,4-glucanase from the acidophilic fungus Bispora sp. MEY-1.
    Luo H; Yang J; Yang P; Li J; Huang H; Shi P; Bai Y; Wang Y; Fan Y; Yao B
    Appl Microbiol Biotechnol; 2010 Jan; 85(4):1015-23. PubMed ID: 19590866
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Separation and direct detection of raw and gelatinized starch hydrolyzing activities of glucoamylase on isoelectric focusing gels.
    Suresh C; Dubey AK; Kini R; Umesh-Kumar S; Karanth NG
    Electrophoresis; 1999 Mar; 20(3):483-5. PubMed ID: 10217158
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A novel highly acidic beta-mannanase from the acidophilic fungus Bispora sp. MEY-1: gene cloning and overexpression in Pichia pastoris.
    Luo H; Wang Y; Wang H; Yang J; Yang Y; Huang H; Yang P; Bai Y; Shi P; Fan Y; Yao B
    Appl Microbiol Biotechnol; 2009 Mar; 82(3):453-61. PubMed ID: 18998121
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Kinetics of enhanced ethanol productivity using raw starch hydrolyzing glucoamylase from Aspergillus niger mutant produced in solid state fermentation.
    Rajoka MI; Yasmin A; Latif F
    Lett Appl Microbiol; 2004; 39(1):13-8. PubMed ID: 15189282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An alpha-galactosidase from an acidophilic Bispora sp. MEY-1 strain acts synergistically with beta-mannanase.
    Wang H; Luo H; Li J; Bai Y; Huang H; Shi P; Fan Y; Yao B
    Bioresour Technol; 2010 Nov; 101(21):8376-82. PubMed ID: 20591661
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improvement of the catalytic efficiency of a hyperthermophilic xylanase from Bispora sp. MEY-1.
    Wang X; Zheng F; Wang Y; Tu T; Ma R; Su X; You S; Yao B; Xie X; Luo H
    PLoS One; 2017; 12(12):e0189806. PubMed ID: 29253895
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum.
    Dock C; Hess M; Antranikian G
    Appl Microbiol Biotechnol; 2008 Feb; 78(1):105-14. PubMed ID: 18080814
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Catalytic properties of two Rhizopus oryzae 99-880 glucoamylase enzymes without starch binding domains expressed in Pichia pastoris.
    Mertens JA; Braker JD; Jordan DB
    Appl Biochem Biotechnol; 2010 Dec; 162(8):2197-213. PubMed ID: 20549574
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Characterization of glucoamylase from Aspergillus terreus 4.
    Ghose A; Chatterjee BS; Das A
    FEMS Microbiol Lett; 1990 Jan; 54(1-3):345-9. PubMed ID: 1691122
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Starch-degrading enzymes from the brown-rot fungus Fomitopsis palustris.
    Tanaka Y; Konno N; Suzuki T; Habu N
    Protein Expr Purif; 2020 Jun; 170():105609. PubMed ID: 32070765
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The activity of barley alpha-amylase on starch granules is enhanced by fusion of a starch binding domain from Aspergillus niger glucoamylase.
    Juge N; Nøhr J; Le Gal-Coëffet MF; Kramhøft B; Furniss CS; Planchot V; Archer DB; Williamson G; Svensson B
    Biochim Biophys Acta; 2006 Feb; 1764(2):275-84. PubMed ID: 16403494
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification and characterization of glucoamylase of Aspergillus oryzae from Luzhou-flavour Daqu.
    Wang C; Yang L; Luo L; Tang S; Wang Q
    Biotechnol Lett; 2020 Nov; 42(11):2345-2355. PubMed ID: 32623532
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of thermostable α-amylase injection on mechanical and physiochemical properties for saccharification of extruded corn starch.
    Myat L; Ryu GH
    J Sci Food Agric; 2014 Jan; 94(2):288-95. PubMed ID: 23744822
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis.
    Salgaonkar M; Nadar SS; Rathod VK
    Int J Biol Macromol; 2018 Jul; 113():464-475. PubMed ID: 29458106
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Comparative study of biochemical properties of glucoamylases from the filamentous fungi Penicillium and Aspergillus.
    Volkov PV; Rozhkova AM; Semenova MV; Zorov IN; Sinitsyn AP
    Biochemistry (Mosc); 2013 Oct; 78(10):1180-9. PubMed ID: 24237153
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Purification and functional properties of a novel glucoamylase activated by manganese and lead produced by Aspergillus japonicus.
    Pasin TM; Benassi VM; Heinen PR; Damasio ARL; Cereia M; Jorge JA; Polizeli MLTM
    Int J Biol Macromol; 2017 Sep; 102():779-788. PubMed ID: 28412339
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.