These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 25415533)
1. Orchestrated photocatalytic hydrogen generation using surface-adsorbing iridium photosensitizers. Wang YJ; Chang G; Chen Q; Yang GJ; Fan SQ; Fang B Chem Commun (Camb); 2015 Jan; 51(4):685-8. PubMed ID: 25415533 [TBL] [Abstract][Full Text] [Related]
2. Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. DiSalle BF; Bernhard S J Am Chem Soc; 2011 Aug; 133(31):11819-21. PubMed ID: 21749095 [TBL] [Abstract][Full Text] [Related]
3. Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. Curtin PN; Tinker LL; Burgess CM; Cline ED; Bernhard S Inorg Chem; 2009 Nov; 48(22):10498-506. PubMed ID: 19606847 [TBL] [Abstract][Full Text] [Related]
4. Water reduction systems associated with homoleptic cyclometalated iridium complexes of various 2-phenylpyridines. Yuan YJ; Yu ZT; Cai JG; Zheng C; Huang W; Zou ZG ChemSusChem; 2013 Aug; 6(8):1357-65. PubMed ID: 23843363 [TBL] [Abstract][Full Text] [Related]
5. Highly efficient photocatalytic water reduction with robust iridium(III) photosensitizers containing arylsilyl substituents. Whang DR; Sakai K; Park SY Angew Chem Int Ed Engl; 2013 Oct; 52(44):11612-5. PubMed ID: 24027139 [TBL] [Abstract][Full Text] [Related]
6. Synthesis, characterisation and application of iridium(III) photosensitisers for catalytic water reduction. Gärtner F; Cozzula D; Losse S; Boddien A; Anilkumar G; Junge H; Schulz T; Marquet N; Spannenberg A; Gladiali S; Beller M Chemistry; 2011 Jun; 17(25):6998-7006. PubMed ID: 21557356 [TBL] [Abstract][Full Text] [Related]
7. Cyclodextrin-based systems for photoinduced hydrogen evolution. Mourtzis N; Carballada PC; Felici M; Nolte RJ; Williams RM; de Cola L; Feiters MC Phys Chem Chem Phys; 2011 May; 13(17):7903-9. PubMed ID: 21442122 [TBL] [Abstract][Full Text] [Related]
8. Synthesis and characterization of new iridium photosensitizers for catalytic hydrogen generation from water. Gärtner F; Denurra S; Losse S; Neubauer A; Boddien A; Gopinathan A; Spannenberg A; Junge H; Lochbrunner S; Blug M; Hoch S; Busse J; Gladiali S; Beller M Chemistry; 2012 Mar; 18(11):3220-5. PubMed ID: 22334566 [TBL] [Abstract][Full Text] [Related]
9. Peptide-linked porphyrin sensitiser and colloidal Pt or Ir catalyst in the H2 formation reaction. Arai T; Matsumoto S; Obata N; Kato T; Nishino N Photochem Photobiol Sci; 2012 Feb; 11(2):289-93. PubMed ID: 22105945 [TBL] [Abstract][Full Text] [Related]
10. Homogeneous photocatalytic hydrogen production using π-conjugated platinum(II) arylacetylide sensitizers. Wang X; Goeb S; Ji Z; Pogulaichenko NA; Castellano FN Inorg Chem; 2011 Feb; 50(3):705-7. PubMed ID: 21204549 [TBL] [Abstract][Full Text] [Related]
11. Efficient [FeFe] hydrogenase mimic dyads covalently linking to iridium photosensitizer for photocatalytic hydrogen evolution. Cui HH; Hu MQ; Wen HM; Chai GL; Ma CB; Chen H; Chen CN Dalton Trans; 2012 Dec; 41(45):13899-907. PubMed ID: 23023604 [TBL] [Abstract][Full Text] [Related]
12. Cyclometalated iridium and platinum complexes as singlet oxygen photosensitizers: quantum yields, quenching rates and correlation with electronic structures. Djurovich PI; Murphy D; Thompson ME; Hernandez B; Gao R; Hunt PL; Selke M Dalton Trans; 2007 Sep; (34):3763-70. PubMed ID: 17712442 [TBL] [Abstract][Full Text] [Related]
13. Energetic requirements of iridium(III) complex based photosensitisers in photocatalytic hydrogen generation. Fan S; Zong X; Shaw PE; Wang X; Geng Y; Smith AR; Burn PL; Wang L; Lo SC Phys Chem Chem Phys; 2014 Oct; 16(39):21577-85. PubMed ID: 25189282 [TBL] [Abstract][Full Text] [Related]
14. Efficient H2-producing photocatalytic systems based on cyclometalated iridium- and tricarbonylrhenium-diimine photosensitizers and cobaloxime catalysts. Fihri A; Artero V; Pereira A; Fontecave M Dalton Trans; 2008 Nov; (41):5567-9. PubMed ID: 18854893 [TBL] [Abstract][Full Text] [Related]
15. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Wu LZ; Chen B; Li ZJ; Tung CH Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498 [TBL] [Abstract][Full Text] [Related]
16. Reductive side of water splitting in artificial photosynthesis: new homogeneous photosystems of great activity and mechanistic insight. McCormick TM; Calitree BD; Orchard A; Kraut ND; Bright FV; Detty MR; Eisenberg R J Am Chem Soc; 2010 Nov; 132(44):15480-3. PubMed ID: 20945839 [TBL] [Abstract][Full Text] [Related]
17. Charge-neutral amidinate-containing iridium complexes capable of efficient photocatalytic water reduction. Yu ZT; Yuan YJ; Cai JG; Zou ZG Chemistry; 2013 Jan; 19(4):1303-10. PubMed ID: 23180640 [TBL] [Abstract][Full Text] [Related]
18. Visible light induced catalytic water reduction without an electron relay. Tinker LL; McDaniel ND; Curtin PN; Smith CK; Ireland MJ; Bernhard S Chemistry; 2007; 13(31):8726-32. PubMed ID: 17654456 [TBL] [Abstract][Full Text] [Related]
19. Visible-light hydrogen generation using as photocatalysts layered titanates incorporating in the intergallery space ruthenium tris(bipyridyl) and methyl viologen. Sastre F; Bouizi Y; Fornés V; Garcia H J Colloid Interface Sci; 2010 Jun; 346(1):172-7. PubMed ID: 20356602 [TBL] [Abstract][Full Text] [Related]
20. Iridium and rhodium complexes within a macroreticular acidic resin: a heterogeneous photocatalyst for visible-light driven H2 production without an electron mediator. Mori K; Kubota Y; Yamashita H Chem Asian J; 2013 Dec; 8(12):3207-13. PubMed ID: 24115471 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]