These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 25415538)
1. Multiwalled nanotubes formed by catanionic mixtures of drug amphiphiles. Lin YA; Cheetham AG; Zhang P; Ou YC; Li Y; Liu G; Hermida-Merino D; Hamley IW; Cui H ACS Nano; 2014 Dec; 8(12):12690-700. PubMed ID: 25415538 [TBL] [Abstract][Full Text] [Related]
2. Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Kang M; Chakraborty K; Loverde SM J Chem Inf Model; 2018 Jun; 58(6):1164-1168. PubMed ID: 29856610 [TBL] [Abstract][Full Text] [Related]
3. Supramolecular nanostructures formed by anticancer drug assembly. Cheetham AG; Zhang P; Lin YA; Lock LL; Cui H J Am Chem Soc; 2013 Feb; 135(8):2907-10. PubMed ID: 23379791 [TBL] [Abstract][Full Text] [Related]
4. Rational Coarse-Grained Molecular Dynamics Simulations of Supramolecular Anticancer Nanotubes. Manandhar A; Chakraborty K; Tang PK; Kang M; Zhang P; Cui H; Loverde SM J Phys Chem B; 2019 Dec; 123(50):10582-10593. PubMed ID: 31749360 [TBL] [Abstract][Full Text] [Related]
5. Molecular design and synthesis of self-assembling camptothecin drug amphiphiles. Cheetham AG; Lin YA; Lin R; Cui H Acta Pharmacol Sin; 2017 Jun; 38(6):874-884. PubMed ID: 28260797 [TBL] [Abstract][Full Text] [Related]
6. The self-assembly of anticancer camptothecin-dipeptide nanotubes: a minimalistic and high drug loading approach to increased efficacy. Kim SH; Kaplan JA; Sun Y; Shieh A; Sun HL; Croce CM; Grinstaff MW; Parquette JR Chemistry; 2015 Jan; 21(1):101-5. PubMed ID: 25384556 [TBL] [Abstract][Full Text] [Related]
7. Self-assembly of natural and synthetic drug amphiphiles into discrete supramolecular nanostructures. Lock LL; LaComb M; Schwarz K; Cheetham AG; Lin YA; Zhang P; Cui H Faraday Discuss; 2013; 166():285-301. PubMed ID: 24611283 [TBL] [Abstract][Full Text] [Related]
8. Composite Nanotube Ring Structures Formed by Two-Step Self-Assembly for Drug Loading/Release. Wang J; Li J; Wang M; Yao Q; Yan Y; Zhang J Langmuir; 2019 Feb; 35(8):3108-3115. PubMed ID: 30727728 [TBL] [Abstract][Full Text] [Related]
9. Recent Strategies in the Development of Catanionic Vesicles. Kuo AT; Chang CH J Oleo Sci; 2016 May; 65(5):377-84. PubMed ID: 27086996 [TBL] [Abstract][Full Text] [Related]
10. Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Sahoo NG; Bao H; Pan Y; Pal M; Kakran M; Cheng HK; Li L; Tan LP Chem Commun (Camb); 2011 May; 47(18):5235-7. PubMed ID: 21451845 [TBL] [Abstract][Full Text] [Related]
11. Bile acid derivative-based catanionic mixtures: versatile tools for superficial charge modulation of supramolecular lamellae and nanotubes. di Gregorio MC; Severoni E; Travaglini L; Gubitosi M; Sennato S; Mura F; Redondo-Gómez C; Jover A; Pavel NV; Galantini L Phys Chem Chem Phys; 2018 Jul; 20(28):18957-18968. PubMed ID: 29972162 [TBL] [Abstract][Full Text] [Related]
12. DNA-π Amphiphiles: A Unique Building Block for the Crafting of DNA-Decorated Unilamellar Nanostructures. Albert SK; Golla M; Krishnan N; Perumal D; Varghese R Acc Chem Res; 2020 Nov; 53(11):2668-2679. PubMed ID: 33052654 [TBL] [Abstract][Full Text] [Related]
13. Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. Wu W; Li R; Bian X; Zhu Z; Ding D; Li X; Jia Z; Jiang X; Hu Y ACS Nano; 2009 Sep; 3(9):2740-50. PubMed ID: 19702292 [TBL] [Abstract][Full Text] [Related]
14. A practical strategy for constructing nanodrugs using carbon nanotubes as carriers. Wu W; Jiang X Methods Mol Biol; 2011; 751():565-82. PubMed ID: 21674355 [TBL] [Abstract][Full Text] [Related]
15. DNA nanotubes and helical nanotapes via self-assembly of ssDNA-amphiphiles. Pearce TR; Kokkoli E Soft Matter; 2015 Jan; 11(1):109-17. PubMed ID: 25370121 [TBL] [Abstract][Full Text] [Related]
16. Multifunctional Polymeric Prodrug with Simultaneous Conjugating Camptothecin and Doxorubicin for pH/Reduction Dual-Responsive Drug Delivery. Dong S; Sun Y; Liu J; Li L; He J; Zhang M; Ni P ACS Appl Mater Interfaces; 2019 Mar; 11(9):8740-8748. PubMed ID: 30693750 [TBL] [Abstract][Full Text] [Related]
17. Impact of solvent physical parameters on the aggregation process of catanionic amphiphiles. Ramsch R; Cassel S; Rico-Lattes I Langmuir; 2009 Jun; 25(12):6733-8. PubMed ID: 19505155 [TBL] [Abstract][Full Text] [Related]
18. Tuning One-Dimensional Nanostructures of Bola-Like Peptide Amphiphiles by Varying the Hydrophilic Amino Acids. Zhao Y; Deng L; Yang W; Wang D; Pambou E; Lu Z; Li Z; Wang J; King S; Rogers S; Xu H; Lu JR Chemistry; 2016 Aug; 22(32):11394-404. PubMed ID: 27362441 [TBL] [Abstract][Full Text] [Related]
20. Methotrexate-based amphiphilic prodrug nanoaggregates for co-administration of multiple therapeutics and synergistic cancer therapy. Hou M; Gao YE; Shi X; Bai S; Ma X; Li B; Xiao B; Xue P; Kang Y; Xu Z Acta Biomater; 2018 Sep; 77():228-239. PubMed ID: 30006314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]