These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 25415613)

  • 1. KCa3.1: a new player in progressive kidney disease.
    Huang C; Pollock CA; Chen XM
    Curr Opin Nephrol Hypertens; 2015 Jan; 24(1):61-6. PubMed ID: 25415613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blockade of KCa3.1 ameliorates renal fibrosis through the TGF-β1/Smad pathway in diabetic mice.
    Huang C; Shen S; Ma Q; Chen J; Gill A; Pollock CA; Chen XM
    Diabetes; 2013 Aug; 62(8):2923-34. PubMed ID: 23656889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the potassium channel KCa3.1 in diabetic nephropathy.
    Huang C; Pollock CA; Chen XM
    Clin Sci (Lond); 2014 Oct; 127(7):423-33. PubMed ID: 24963668
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KCa3.1 mediates dysfunction of tubular autophagy in diabetic kidneys via PI3k/Akt/mTOR signaling pathways.
    Huang C; Lin MZ; Cheng D; Braet F; Pollock CA; Chen XM
    Sci Rep; 2016 Mar; 6():23884. PubMed ID: 27029904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High glucose induces CCL20 in proximal tubular cells via activation of the KCa3.1 channel.
    Huang C; Pollock CA; Chen XM
    PLoS One; 2014; 9(4):e95173. PubMed ID: 24733189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KCa3.1 mediates activation of fibroblasts in diabetic renal interstitial fibrosis.
    Huang C; Shen S; Ma Q; Gill A; Pollock CA; Chen XM
    Nephrol Dial Transplant; 2014 Feb; 29(2):313-24. PubMed ID: 24166472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The KCa3.1 blocker TRAM34 reverses renal damage in a mouse model of established diabetic nephropathy.
    Huang C; Zhang L; Shi Y; Yi H; Zhao Y; Chen J; Pollock CA; Chen XM
    PLoS One; 2018; 13(2):e0192800. PubMed ID: 29425253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of aspirin with telmisartan suppresses the augmented TGFbeta/smad signaling during the development of streptozotocin-induced type I diabetic nephropathy.
    Mulay SR; Gaikwad AB; Tikoo K
    Chem Biol Interact; 2010 Apr; 185(2):137-42. PubMed ID: 20223228
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role and mechanism of K
    Ma XZ; Pang ZD; Wang JH; Song Z; Zhao LM; Du XJ; Deng XL
    Exp Cell Res; 2018 Aug; 369(2):208-217. PubMed ID: 29792849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Targeted inhibition of KCa3.1 channel attenuates airway inflammation and remodeling in allergic asthma.
    Yu ZH; Xu JR; Wang YX; Xu GN; Xu ZP; Yang K; Wu DZ; Cui YY; Chen HZ
    Am J Respir Cell Mol Biol; 2013 Jun; 48(6):685-93. PubMed ID: 23492185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. K
    Pang ZD; Wang Y; Wang XJ; She G; Ma XZ; Song Z; Zhao LM; Wang HF; Lai BC; Gou W; Du XJ; Deng XL
    FASEB J; 2019 Dec; 33(12):14760-14771. PubMed ID: 31690106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of treatment for diabetic nephropathy: historical progression from RAAS inhibition and onward.
    Blumenthal SS
    Postgrad Med; 2011 Nov; 123(6):166-79. PubMed ID: 22104465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transforming growth factor-β/Smad signalling in diabetic nephropathy.
    Lan HY
    Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):731-8. PubMed ID: 22211842
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic nephropathy: where hemodynamics meets metabolism.
    Forbes JM; Fukami K; Cooper ME
    Exp Clin Endocrinol Diabetes; 2007 Feb; 115(2):69-84. PubMed ID: 17318765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential for peroxisome proliferator-activated receptor-gamma agonists in progression: beyond metabolism.
    Fogo AB
    Curr Opin Nephrol Hypertens; 2008 May; 17(3):282-5. PubMed ID: 18408479
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RAGE- and TGF-beta receptor-mediated signals converge on STAT5 and p21waf to control cell-cycle progression of mesangial cells: a possible role in the development and progression of diabetic nephropathy.
    Brizzi MF; Dentelli P; Rosso A; Calvi C; Gambino R; Cassader M; Salvidio G; Deferrari G; Camussi G; Pegoraro L; Pagano G; Cavallo-Perin P
    FASEB J; 2004 Aug; 18(11):1249-51. PubMed ID: 15180953
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Advanced glycation end products activate Smad signaling via TGF-beta-dependent and independent mechanisms: implications for diabetic renal and vascular disease.
    Li JH; Huang XR; Zhu HJ; Oldfield M; Cooper M; Truong LD; Johnson RJ; Lan HY
    FASEB J; 2004 Jan; 18(1):176-8. PubMed ID: 12709399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the TGF-β/BMP-7/Smad pathways in renal diseases.
    Meng XM; Chung AC; Lan HY
    Clin Sci (Lond); 2013 Feb; 124(4):243-54. PubMed ID: 23126427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood pressure, hypertension, RAAS blockade, and drug therapy in diabetic kidney disease.
    Yamout H; Lazich I; Bakris GL
    Adv Chronic Kidney Dis; 2014 May; 21(3):281-6. PubMed ID: 24780456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. KCa3.1 Ca2+ activated K+ channels regulate human airway smooth muscle proliferation.
    Shepherd MC; Duffy SM; Harris T; Cruse G; Schuliga M; Brightling CE; Neylon CB; Bradding P; Stewart AG
    Am J Respir Cell Mol Biol; 2007 Nov; 37(5):525-31. PubMed ID: 17585114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.