BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 25415647)

  • 1. A thermostable transketolase evolved for aliphatic aldehyde acceptors.
    Yi D; Saravanan T; Devamani T; Charmantray F; Hecquet L; Fessner WD
    Chem Commun (Camb); 2015 Jan; 51(3):480-3. PubMed ID: 25415647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Second-Generation Engineering of a Thermostable Transketolase (TK
    Zhou C; Saravanan T; Lorillière M; Wei D; Charmantray F; Hecquet L; Fessner WD; Yi D
    Chembiochem; 2017 Mar; 18(5):455-459. PubMed ID: 28005308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-alpha-hydroxylated aldehydes with evolved transketolase enzymes.
    Cázares A; Galman JL; Crago LG; Smith ME; Strafford J; Ríos-Solís L; Lye GJ; Dalby PA; Hailes HC
    Org Biomol Chem; 2010 Mar; 8(6):1301-9. PubMed ID: 20204200
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Donor Promiscuity of a Thermostable Transketolase by Directed Evolution: Efficient Complementation of 1-Deoxy-d-xylulose-5-phosphate Synthase Activity.
    Saravanan T; Junker S; Kickstein M; Hein S; Link MK; Ranglack J; Witt S; Lorillière M; Hecquet L; Fessner WD
    Angew Chem Int Ed Engl; 2017 May; 56(19):5358-5362. PubMed ID: 28378514
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Directed evolution of transketolase substrate specificity towards an aliphatic aldehyde.
    Hibbert EG; Senussi T; Smith ME; Costelloe SJ; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2008 Apr; 134(3-4):240-5. PubMed ID: 18342970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Analysis of an Evolved Transketolase Reveals Divergent Binding Modes.
    Affaticati PE; Dai SB; Payongsri P; Hailes HC; Tittmann K; Dalby PA
    Sci Rep; 2016 Oct; 6():35716. PubMed ID: 27767080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. α,α'-Dihydroxyketone formation using aromatic and heteroaromatic aldehydes with evolved transketolase enzymes.
    Galman JL; Steadman D; Bacon S; Morris P; Smith ME; Ward JM; Dalby PA; Hailes HC
    Chem Commun (Camb); 2010 Oct; 46(40):7608-10. PubMed ID: 20835425
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Second generation engineering of transketolase for polar aromatic aldehyde substrates.
    Payongsri P; Steadman D; Hailes HC; Dalby PA
    Enzyme Microb Technol; 2015 Apr; 71():45-52. PubMed ID: 25765309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A colorimetric assay for screening transketolase activity.
    Smith ME; Kaulmann U; Ward JM; Hailes HC
    Bioorg Med Chem; 2006 Oct; 14(20):7062-5. PubMed ID: 16784864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Directed evolution to re-adapt a co-evolved network within an enzyme.
    Strafford J; Payongsri P; Hibbert EG; Morris P; Batth SS; Steadman D; Smith ME; Ward JM; Hailes HC; Dalby PA
    J Biotechnol; 2012 Jan; 157(1):237-45. PubMed ID: 22154561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rational substrate and enzyme engineering of transketolase for aromatics.
    Payongsri P; Steadman D; Strafford J; MacMurray A; Hailes HC; Dalby PA
    Org Biomol Chem; 2012 Dec; 10(45):9021-9. PubMed ID: 23079923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of cofactor-binding loop mutations on thermotolerance and activity of E. coli transketolase.
    Morris P; Rios-Solis L; García-Arrazola R; Lye GJ; Dalby PA
    Enzyme Microb Technol; 2016 Jul; 89():85-91. PubMed ID: 27233131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-Throughput Solid-Phase Assay for Substrate Profiling and Directed Evolution of Transketolase.
    Ocal N; Lagarde A; L'enfant M; Charmantray F; Hecquet L
    Chembiochem; 2021 Sep; 22(18):2814-2820. PubMed ID: 34289225
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessing the Thiamine Diphosphate Dependent Pyruvate Dehydrogenase E1 Subunit for Carboligation Reactions with Aliphatic Ketoacids.
    Marsden SR; McMillan DGG; Hanefeld U
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino acid precursors for the detection of transketolase activity in Escherichia coli auxotrophs.
    Simon G; Bouzon M; Charmantray F; Hélaine V; Légeret B; Marlière P; Hecquet L
    Bioorg Med Chem Lett; 2009 Jul; 19(14):3767-70. PubMed ID: 19535247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of coenzyme modification on the structural and catalytic properties of wild-type transketolase and of the variant E418A from Saccharomyces cerevisiae.
    Golbik R; Meshalkina LE; Sandalova T; Tittmann K; Fiedler E; Neef H; König S; Kluger R; Kochetov GA; Schneider G; Hübner G
    FEBS J; 2005 Mar; 272(6):1326-42. PubMed ID: 15752351
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploiting correlated molecular-dynamics networks to counteract enzyme activity-stability trade-off.
    Yu H; Dalby PA
    Proc Natl Acad Sci U S A; 2018 Dec; 115(52):E12192-E12200. PubMed ID: 30530661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M; Lindqvist Y; Schneider G
    J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.