These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25415752)
1. Time Correlation Function Modeling of Third-Order Sum Frequency Vibrational Spectroscopy of a Charged Surface/Water Interface. Green AJ; Space B J Phys Chem B; 2015 Jul; 119(29):9219-24. PubMed ID: 25415752 [TBL] [Abstract][Full Text] [Related]
2. A time correlation function theory describing static field enhanced third order optical effects at interfaces. Neipert C; Space B J Chem Phys; 2006 Dec; 125(22):224706. PubMed ID: 17176153 [TBL] [Abstract][Full Text] [Related]
3. A theoretical study of the sum frequency vibrational spectroscopy of the carbon tetrachloride/water interface. Green AJ; Perry A; Moore PB; Space B J Phys Condens Matter; 2012 Mar; 24(12):124108. PubMed ID: 22395178 [TBL] [Abstract][Full Text] [Related]
4. Computational Study of Acidic and Basic Functionalized Crystalline Silica Surfaces as a Model for Biomaterial Interfaces. Corno M; Delle Piane M; Monti S; Moreno-Couranjou M; Choquet P; Ugliengo P Langmuir; 2015 Jun; 31(23):6321-31. PubMed ID: 26010674 [TBL] [Abstract][Full Text] [Related]
5. Clusters of classical water models. Kiss PT; Baranyai A J Chem Phys; 2009 Nov; 131(20):204310. PubMed ID: 19947683 [TBL] [Abstract][Full Text] [Related]
6. Theoretical study of sum-frequency vibrational spectroscopy on limonene surface. Zheng RH; Wei WM; Liu H; Jing YY; Wang BY; Shi Q J Chem Phys; 2014 Mar; 140(10):104702. PubMed ID: 24628191 [TBL] [Abstract][Full Text] [Related]
7. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. Nihonyanagi S; Yamaguchi S; Tahara T J Chem Phys; 2009 May; 130(20):204704. PubMed ID: 19485472 [TBL] [Abstract][Full Text] [Related]
8. Why fluorination of the polar heads reverses the positive sign of the dipole potential of Langmuir monolayers: a vibrational sum frequency spectroscopic study. Karageorgiev P; Petrov JG; Motschmann H; Moehwald H Langmuir; 2013 Apr; 29(15):4726-36. PubMed ID: 23496772 [TBL] [Abstract][Full Text] [Related]
9. An investigation of the influence of chain length on the interfacial ordering of L-lysine and L-proline and their homopeptides at hydrophobic and hydrophilic interfaces studied by sum frequency generation and quartz crystal microbalance. York RL; Holinga GJ; Somorjai GA Langmuir; 2009 Aug; 25(16):9369-74. PubMed ID: 19719227 [TBL] [Abstract][Full Text] [Related]
10. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review. Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491 [TBL] [Abstract][Full Text] [Related]
11. Dynamics and vibrational spectroscopy of water at hydroxylated silica surfaces. Gupta PK; Meuwly M Faraday Discuss; 2013; 167():329-46. PubMed ID: 24640499 [TBL] [Abstract][Full Text] [Related]
12. Role of interfacial water on protein adsorption at cross-linked polyethylene oxide interfaces. Leung BO; Yang Z; Wu SS; Chou KC Langmuir; 2012 Apr; 28(13):5724-8. PubMed ID: 22390193 [TBL] [Abstract][Full Text] [Related]
13. Vibrational spectrum at a water surface: a hybrid quantum mechanics/molecular mechanics molecular dynamics approach. Ishiyama T; Takahashi H; Morita A J Phys Condens Matter; 2012 Mar; 24(12):124107. PubMed ID: 22395143 [TBL] [Abstract][Full Text] [Related]
14. Effect of hydrogen-bond strength on the vibrational relaxation of interfacial water. Eftekhari-Bafrooei A; Borguet E J Am Chem Soc; 2010 Mar; 132(11):3756-61. PubMed ID: 20184315 [TBL] [Abstract][Full Text] [Related]
15. Structuring of interfacial water on silica surface in cyclohexane studied by surface forces measurement and sum frequency generation vibrational spectroscopy. Mizukami M; Kobayashi A; Kurihara K Langmuir; 2012 Oct; 28(40):14284-90. PubMed ID: 22974462 [TBL] [Abstract][Full Text] [Related]
16. "Half-hydration" at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. Watanabe H; Yamaguchi S; Sen S; Morita A; Tahara T J Chem Phys; 2010 Apr; 132(14):144701. PubMed ID: 20406004 [TBL] [Abstract][Full Text] [Related]
17. Development of an empirical force field for silica. Application to the quartz-water interface. Lopes PE; Murashov V; Tazi M; Demchuk E; Mackerell AD J Phys Chem B; 2006 Feb; 110(6):2782-92. PubMed ID: 16471886 [TBL] [Abstract][Full Text] [Related]
18. Structure and vibrational spectroscopy of salt water/air interfaces: predictions from classical molecular dynamics simulations. Brown EC; Mucha M; Jungwirth P; Tobias DJ J Phys Chem B; 2005 Apr; 109(16):7934-40. PubMed ID: 16851926 [TBL] [Abstract][Full Text] [Related]
19. Surfactant headgroup orientation at the air/water interface. Hore DK; Beaman DK; Richmond GL J Am Chem Soc; 2005 Jul; 127(26):9356-7. PubMed ID: 15984848 [TBL] [Abstract][Full Text] [Related]
20. Organization of water and atmospherically relevant ions and solutes: vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Jubb AM; Hua W; Allen HC Acc Chem Res; 2012 Jan; 45(1):110-9. PubMed ID: 22066822 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]