These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 25415892)
1. Basis function sampling: a new paradigm for material property computation. Whitmer JK; Chiu CC; Joshi AA; de Pablo JJ Phys Rev Lett; 2014 Nov; 113(19):190602. PubMed ID: 25415892 [TBL] [Abstract][Full Text] [Related]
2. Measuring liquid crystal elastic constants with free energy perturbations. Joshi AA; Whitmer JK; Guzmán O; Abbott NL; de Pablo JJ Soft Matter; 2014 Feb; 10(6):882-93. PubMed ID: 24837037 [TBL] [Abstract][Full Text] [Related]
3. Theoretically informed Monte Carlo simulation of liquid crystals by sampling of alignment-tensor fields. Armas-Pérez JC; Londono-Hurtado A; Guzmán O; Hernández-Ortiz JP; de Pablo JJ J Chem Phys; 2015 Jul; 143(4):044107. PubMed ID: 26233107 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Landau-de Gennes potential for nematic liquid crystals from a systematic coarse-graining procedure. Ilg P Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061709. PubMed ID: 23005116 [TBL] [Abstract][Full Text] [Related]
5. Wang-Landau Monte Carlo simulation of isotropic-nematic transition in liquid crystals. Jayasri D; Sastry VS; Murthy KP Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 2):036702. PubMed ID: 16241609 [TBL] [Abstract][Full Text] [Related]
6. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach. Ilk Capar M; Nar A; Ferrarini A; Frezza E; Greco C; Zakharov AV; Vakulenko AA J Chem Phys; 2013 Mar; 138(11):114902. PubMed ID: 23534657 [TBL] [Abstract][Full Text] [Related]
7. Monte Carlo simulation strategies for computing the wetting properties of fluids at geometrically rough surfaces. Kumar V; Sridhar S; Errington JR J Chem Phys; 2011 Nov; 135(18):184702. PubMed ID: 22088073 [TBL] [Abstract][Full Text] [Related]
8. Simulation study of the polymer translocation free energy barrier. Polson JM; Hassanabad MF; McCaffrey A J Chem Phys; 2013 Jan; 138(2):024906. PubMed ID: 23320720 [TBL] [Abstract][Full Text] [Related]
9. A scalable parallel Monte Carlo method for free energy simulations of molecular systems. Khan MO; Kennedy G; Chan DY J Comput Chem; 2005 Jan; 26(1):72-7. PubMed ID: 15529329 [TBL] [Abstract][Full Text] [Related]
10. First-order and continuous Fréedericksz transitions in cholesteric liquid crystals. Val'kov AY; Aksenova EV; Romanov VP Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb; 87(2):022508. PubMed ID: 23496536 [TBL] [Abstract][Full Text] [Related]
11. Essential energy space random walks to accelerate molecular dynamics simulations: convergence improvements via an adaptive-length self-healing strategy. Zheng L; Yang W J Chem Phys; 2008 Jul; 129(1):014105. PubMed ID: 18624468 [TBL] [Abstract][Full Text] [Related]
12. Temperature-dependent orientational ordering on a spherical surface modeled with a lattice spin model. Luo AM; Wenk S; Ilg P Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022502. PubMed ID: 25215744 [TBL] [Abstract][Full Text] [Related]
13. Understanding free-energy perturbation calculations through a model of harmonic oscillators: theory and implications to improve the sampling efficiency by molecular simulation. Wu D J Chem Phys; 2010 Dec; 133(24):244116. PubMed ID: 21197985 [TBL] [Abstract][Full Text] [Related]
14. A hybrid recursion method to robustly ensure convergence efficiencies in the simulated scaling based free energy simulations. Zheng L; Carbone IO; Lugovskoy A; Berg BA; Yang W J Chem Phys; 2008 Jul; 129(3):034105. PubMed ID: 18647014 [TBL] [Abstract][Full Text] [Related]
15. Method for sampling compact configurations for semistiff polymers. Siretskiy A; Elvingson C; Vorontsov-Velyaminov P; Khan MO Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 2):016702. PubMed ID: 21867338 [TBL] [Abstract][Full Text] [Related]
16. Accelerating flat-histogram methods for potential of mean force calculations. Janosi L; Doxastakis M J Chem Phys; 2009 Aug; 131(5):054105. PubMed ID: 19673549 [TBL] [Abstract][Full Text] [Related]
17. Calculations of helical twisting powers from intermolecular torques. Earl DJ; Wilson MR J Chem Phys; 2004 May; 120(20):9679-83. PubMed ID: 15267981 [TBL] [Abstract][Full Text] [Related]
18. Improving the Wang-Landau algorithm for polymers and proteins. Swetnam AD; Allen MP J Comput Chem; 2011 Apr; 32(5):816-21. PubMed ID: 20941735 [TBL] [Abstract][Full Text] [Related]
19. Numerical method for determining the interface free energy. Hietanen A; Lucini B Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 2):056702. PubMed ID: 22181542 [TBL] [Abstract][Full Text] [Related]
20. Interactions between spherical colloids mediated by a liquid crystal: a molecular simulation and mesoscale study. Kim EB; Guzman O; Grollau S; Abbott NL; de Pablo JJ J Chem Phys; 2004 Jul; 121(4):1949-61. PubMed ID: 15260747 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]