These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 25415908)

  • 1. Universal behavior of the initial stage of drop impact.
    Klaseboer E; Manica R; Chan DY
    Phys Rev Lett; 2014 Nov; 113(19):194501. PubMed ID: 25415908
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a numerical model for predicting the trajectory of blood drops in typical crime scene conditions, including droplet deformation and breakup, with a study of the effect of indoor air currents and wind on typical spatter drop trajectories.
    Kabaliuk N; Jermy MC; Williams E; Laber TL; Taylor MC
    Forensic Sci Int; 2014 Dec; 245():107-20. PubMed ID: 25447183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact dynamics of oxidized liquid metal drops.
    Xu Q; Brown E; Jaeger HM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Apr; 87(4):043012. PubMed ID: 23679518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the Early Regime of Drop Spreading.
    Mitra S; Mitra SK
    Langmuir; 2016 Sep; 32(35):8843-8. PubMed ID: 27513708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Horizontal Motion of a Superhydrophobic Substrate Affects the Drop Bouncing Dynamics.
    Zhan H; Lu C; Liu C; Wang Z; Lv C; Liu Y
    Phys Rev Lett; 2021 Jun; 126(23):234503. PubMed ID: 34170170
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of viscoplastic drops on a heated surface in the Leidenfrost regime.
    Chen S; Bertola V
    Soft Matter; 2016 Sep; 12(36):7624-31. PubMed ID: 27505061
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spreading and retraction as a function of drop size.
    Ghosh M; Stebe KJ
    Adv Colloid Interface Sci; 2010 Dec; 161(1-2):61-76. PubMed ID: 20817136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Emulsions stability, from dilute to dense emulsions -- role of drops deformation.
    Sanfeld A; Steinchen A
    Adv Colloid Interface Sci; 2008 Jul; 140(1):1-65. PubMed ID: 18313631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Universal and scaling behavior at the proximity of the solid to the deformable air-water interface.
    Wang YZ; Wu D; Xiong XM; Zhang JX
    Langmuir; 2007 Nov; 23(24):12119-24. PubMed ID: 17705407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the drop impact on moving hydrophilic and hydrophobic surfaces.
    Almohammadi H; Amirfazli A
    Soft Matter; 2017 Mar; 13(10):2040-2053. PubMed ID: 28198895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Emulsification in turbulent flow 1. Mean and maximum drop diameters in inertial and viscous regimes.
    Vankova N; Tcholakova S; Denkov ND; Ivanov IB; Vulchev VD; Danner T
    J Colloid Interface Sci; 2007 Aug; 312(2):363-80. PubMed ID: 17462665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spreading of liquid drops over dry porous layers: complete wetting case.
    Starov VM; Kostvintsev SR; Sobolev VD; Velarde MG; Zhdanov SA
    J Colloid Interface Sci; 2002 Aug; 252(2):397-408. PubMed ID: 16290805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rebounding suppression of droplet impact on hot surfaces: effect of surface temperature and concaveness.
    Jowkar S; Morad MR
    Soft Matter; 2019 Jan; 15(5):1017-1026. PubMed ID: 30657147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Morphology scaling of drop impact onto a granular layer.
    Katsuragi H
    Phys Rev Lett; 2010 May; 104(21):218001. PubMed ID: 20867137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of liquid drops coalescing in the inertial regime.
    Sprittles JE; Shikhmurzaev YD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063008. PubMed ID: 25019880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coalescence and spreading of drops on liquid pools.
    Kulkarni V; Lolla VY; Tamvada SR; Shirdade N; Anand S
    J Colloid Interface Sci; 2021 Mar; 586():257-268. PubMed ID: 33187667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Singular jets and bubbles in drop impact.
    Bartolo D; Josserand C; Bonn D
    Phys Rev Lett; 2006 Mar; 96(12):124501. PubMed ID: 16605909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oscillation and recoil of single and consecutively printed droplets.
    Yang X; Chhasatia VH; Sun Y
    Langmuir; 2013 Feb; 29(7):2185-92. PubMed ID: 23360081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum Spreading Diameter of Bouncing Droplets at Ultralow Weber Numbers.
    Liu Y; Liu Y; Chen M
    Langmuir; 2023 Jun; 39(22):7922-7929. PubMed ID: 37227757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.