These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 25415964)

  • 21. Epistasis and the Dynamics of Reversion in Molecular Evolution.
    McCandlish DM; Shah P; Plotkin JB
    Genetics; 2016 Jul; 203(3):1335-51. PubMed ID: 27194749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Homoplasy in genome-wide analysis of rare amino acid replacements: the molecular-evolutionary basis for Vavilov's law of homologous series.
    Rogozin IB; Thomson K; Csürös M; Carmel L; Koonin EV
    Biol Direct; 2008 Mar; 3():7. PubMed ID: 18346278
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Topological features of rugged fitness landscapes in sequence space.
    Kondrashov DA; Kondrashov FA
    Trends Genet; 2015 Jan; 31(1):24-33. PubMed ID: 25438718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Are Convergent and Parallel Amino Acid Substitutions in Protein Evolution More Prevalent Than Neutral Expectations?
    Zou Z; Zhang J
    Mol Biol Evol; 2015 Aug; 32(8):2085-96. PubMed ID: 25862140
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel method for estimating ancestral amino acid composition and its application to proteins of the Last Universal Ancestor.
    Brooks DJ; Fresco JR; Singh M
    Bioinformatics; 2004 Sep; 20(14):2251-7. PubMed ID: 15073018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates.
    Heckmann D; Zielinski DC; Palsson BO
    Nat Commun; 2018 Dec; 9(1):5270. PubMed ID: 30532008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Epistasis Creates Invariant Sites and Modulates the Rate of Molecular Evolution.
    Patel R; Carnevale V; Kumar S
    Mol Biol Evol; 2022 May; 39(5):. PubMed ID: 35575390
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A new formulation of protein evolutionary models that account for structural constraints.
    Bordner AJ; Mittelmann HD
    Mol Biol Evol; 2014 Mar; 31(3):736-49. PubMed ID: 24307688
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimating the contribution of folding stability to nonspecific epistasis in protein evolution.
    Dasmeh P; Serohijos AWR
    Proteins; 2018 Dec; 86(12):1242-1250. PubMed ID: 30039542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experimental rugged fitness landscape in protein sequence space.
    Hayashi Y; Aita T; Toyota H; Husimi Y; Urabe I; Yomo T
    PLoS One; 2006 Dec; 1(1):e96. PubMed ID: 17183728
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fitness conferred by replaced amino acids declines with time.
    Naumenko SA; Kondrashov AS; Bazykin GA
    Biol Lett; 2012 Oct; 8(5):825-8. PubMed ID: 22628094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The impact of macroscopic epistasis on long-term evolutionary dynamics.
    Good BH; Desai MM
    Genetics; 2015 Jan; 199(1):177-90. PubMed ID: 25395665
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evolution of Amino Acid Propensities under Stability-Mediated Epistasis.
    Youssef N; Susko E; Roger AJ; Bielawski JP
    Mol Biol Evol; 2022 Mar; 39(3):. PubMed ID: 35134997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phylogenetic substitution models for detecting heterotachy during plastid evolution.
    Whelan S; Blackburne BP; Spencer M
    Mol Biol Evol; 2011 Jan; 28(1):449-58. PubMed ID: 20724379
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A thermodynamic model of protein structure evolution explains empirical amino acid substitution matrices.
    Norn C; André I; Theobald DL
    Protein Sci; 2021 Oct; 30(10):2057-2068. PubMed ID: 34218472
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Shifting Fitness and Epistatic Landscapes Reflect Trade-offs along an Evolutionary Pathway.
    Steinberg B; Ostermeier M
    J Mol Biol; 2016 Jul; 428(13):2730-43. PubMed ID: 27173379
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution Rapidly Optimizes Stability and Aggregation in Lattice Proteins Despite Pervasive Landscape Valleys and Mazes.
    Bertram J; Masel J
    Genetics; 2020 Apr; 214(4):1047-1057. PubMed ID: 32107278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Population size dependence of fitness effect distribution and substitution rate probed by biophysical model of protein thermostability.
    Goldstein RA
    Genome Biol Evol; 2013; 5(9):1584-93. PubMed ID: 23884461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Contingency and chance erase necessity in the experimental evolution of ancestral proteins.
    Xie VC; Pu J; Metzger BP; Thornton JW; Dickinson BC
    Elife; 2021 Jun; 10():. PubMed ID: 34061027
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Correlation between the substitution rate and rate variation among sites in protein evolution.
    Zhang J; Gu X
    Genetics; 1998 Jul; 149(3):1615-25. PubMed ID: 9649548
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.