BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25416149)

  • 61. An operando FTIR spectroscopic and kinetic study of carbon monoxide pressure influence on rhodium-catalyzed olefin hydroformylation.
    Kubis C; Sawall M; Block A; Neymeyr K; Ludwig R; Börner A; Selent D
    Chemistry; 2014 Sep; 20(37):11921-31. PubMed ID: 25081298
    [TBL] [Abstract][Full Text] [Related]  

  • 62. C-H and C-O bond activation with a rhodium(i) β-diiminate complex.
    Langer NN; Bindra GS; Budzelaar PH
    Dalton Trans; 2014 Aug; 43(29):11286-94. PubMed ID: 24699862
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Reactivity and equilibrium thermodynamic studies of rhodium tetrakis(3,5-disulfonatomesityl)porphyrin species with H2, CO, and olefins in water.
    Fu X; Li S; Wayland BB
    Inorg Chem; 2006 Nov; 45(24):9884-9. PubMed ID: 17112286
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Tandem hydroformylation-hydrogenation of 1-decene catalyzed by Rh-bidentate bis(trialkylphosphine)s.
    Ichihara T; Nakano K; Katayama M; Nozaki K
    Chem Asian J; 2008 Sep; 3(8-9):1722-8. PubMed ID: 18683162
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A theoretical study of rhodium(I) catalyzed carbonylative ring expansion of aziridines to beta-lactams: crucial activation of the breaking C-N bond by hyperconjugation.
    Ardura D; López R; Sordo TL
    J Org Chem; 2006 Sep; 71(19):7315-21. PubMed ID: 16958525
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Asymmetric hydroformylation catalyzed by RhH(CO)₂[(R,S)-Yanphos]: mechanism and origin of enantioselectivity.
    Lei M; Wang Z; Du X; Zhang X; Tang Y
    J Phys Chem A; 2014 Oct; 118(39):8960-70. PubMed ID: 24735053
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Isomerization of Olefins Triggered by Rhodium-Catalyzed C-H Bond Activation: Control of Endocyclic β-Hydrogen Elimination.
    Yip SY; Aïssa C
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6870-3. PubMed ID: 25907465
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Why is the Ir(III)-Mediated Amido Transfer Much Faster Than the Rh(III)-Mediated Reaction? A Combined Experimental and Computational Study.
    Park Y; Heo J; Baik MH; Chang S
    J Am Chem Soc; 2016 Oct; 138(42):14020-14029. PubMed ID: 27690406
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Mechanistic features of isomerizing alkoxycarbonylation of methyl oleate.
    Roesle P; Dürr CJ; Möller HM; Cavallo L; Caporaso L; Mecking S
    J Am Chem Soc; 2012 Oct; 134(42):17696-703. PubMed ID: 23072478
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Methyl iodide oxidative addition to [Rh(acac)(CO)(PPh3)]: an experimental and theoretical study of the stereochemistry of the products and the reaction mechanism.
    Conradie MM; Conradie J
    Dalton Trans; 2011 Aug; 40(32):8226-37. PubMed ID: 21761056
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Rh(i)-catalyzed dimerization of ene-vinylidenecyclopropanes for the construction of spiro[4,5]decanes and mechanistic studies.
    Ning C; Rui KH; Wei Y; Shi M
    Chem Sci; 2022 Jun; 13(24):7310-7317. PubMed ID: 35799819
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Endocyclic cleavage in glycosides with 2,3-trans cyclic protecting groups.
    Satoh H; Manabe S; Ito Y; Lüthi HP; Laino T; Hutter J
    J Am Chem Soc; 2011 Apr; 133(14):5610-9. PubMed ID: 21417469
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Mechanism of iron carbonyl-catalyzed hydrogenation of ethylene. 1. Theoretical exploration of molecular pathways.
    Asatryan R; Ruckenstein E
    J Phys Chem A; 2013 Oct; 117(42):10912-32. PubMed ID: 24063638
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Density functional geometry optimization and energy calculations of calcium(II)-triphosphate complexes. Polyphosphates as possible dissolving agents for calcium pyrophosphate dihydrate crystals in chondrocalcinosis disease.
    Cini R; Chindamo D; Catenaccio M; Lorenzini S; Marcolongo R
    J Biomol Struct Dyn; 2000 Aug; 18(1):155-68. PubMed ID: 11021660
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Mechanism of the gold(III)-catalyzed isomerization of substituted allenes to conjugated dienes: a DFT study.
    Basak A; Chakrabarty K; Ghosh A; Das GK
    J Org Chem; 2013 Oct; 78(19):9715-24. PubMed ID: 23992518
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Combined experimental and computational investigations of rhodium- and ruthenium-catalyzed C-H functionalization of pyrazoles with alkynes.
    Algarra AG; Cross WB; Davies DL; Khamker Q; Macgregor SA; McMullin CL; Singh K
    J Org Chem; 2014 Mar; 79(5):1954-70. PubMed ID: 24564771
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The surprising nitrogen-analogue chemistry of the methyltrioxorhenium-catalyzed olefin epoxidation.
    Deubel DV
    J Am Chem Soc; 2003 Dec; 125(50):15308-9. PubMed ID: 14664572
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Rearrangement pathways of five-membered ring enlargement in carbocations: quantum chemical calculations and deuterium kinetic isotope effects.
    Vrcek V; Saunders M; Kronja O
    J Org Chem; 2003 Mar; 68(5):1859-66. PubMed ID: 12608802
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Assessment of density functional methods for reaction energetics: iridium-catalyzed water oxidation as case study.
    Kazaryan A; Baerends EJ
    J Comput Chem; 2013 Apr; 34(10):870-8. PubMed ID: 23281098
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Theoretical studies on beta-aryl elimination from Rh(I) complexes.
    Xue L; Ng KC; Lin Z
    Dalton Trans; 2009 Aug; (30):5841-50. PubMed ID: 19623383
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.